
4x,.'-

LABORATOR Y FRIT IUE OF

COMPUTER SCIENCE ~TECHNLGI (formnerly Project MAC)

904 MTLS/TR=-186

, 7

II I A STRUCTURE MEMORY
-X FOR

DATA F~LOW COMPUTERS'

y~iliam Ackerman U 2397

This research was supported by the t

Advanced Research Projects Agency of

I the Department of Defense and was monitored

4 by the Office of Naval Research under

Cot N01-7- 6
DIT'JBTO TTM

ECURITY CLASSIFICAT ION OF THIS PAGE ?When JDae Entered) _________________

READ ISRCIN

REPORT DOCUMENTATION4 PAGE BEFORE COMPLETING FORM

MIT/LCS/TR-186I
4. TITLE (and Subtitle) S YEO EOTAPRO OEE

1ASrcueMmr o aaFo optr 6. PERFORMING ONG. REPORT NUMBER

MIT/LCS/TR-186
7. UT-W) . CONTRACT OR GRANT MUMURe

W. B. Ackerman - N00014-75 -C-0661

I.PR RAIAINNAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

MIT/Laooratory-for Compter Science V AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, Ma 02139 _____________

IL. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Z Advanced Research Projects
Agency

September 1977

14 0 Wilson. Boule ard JQ
4. FUF4 I RIN AWN~w NAM9 aAVOESSIl iterei frm Controlling Office) 15. SECURITY CLASS. (*I this report)

Of fice of Naval Research Ucasfe
Depvrtm',nt of the Navy ______________

Information Systems Program IS.. PECAJ-ICATIONOOWN RDING

Arlington, Virginia 22217 ______________I

15. DISTRIBUTION STAT9MZMT,(OI this. Report)

Approved for public release; distribution unlimited

17OISTRIOU ION STATEIMENT (of the abatiONt entered In look 20, It difrent fromReot

I4. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revere. aide liIneceeaay and identify by block num ber)

asynchronous digital systems data structures
packet cotmunicat ion mmr
data f lo.' crmputers cache memory

20 \A ST RACT (Continue ont Vese StIX It necessary and identif y bock numiber)

A data flow computer is one which achieves enormous concurrency of ins truc-
tion execution through a machine architecture that acts directly on a data de-
pendency graph of the program. To handle arrays and data structures effectivelyl
a data flow computer must have access to a memory system which can handle large
numbers of concurrent transactions. This thesis presents a design for such a
memory. A Cache"'iiechanism is presented for improving the performance of the
system, and a mechanism Is given for using sequential-access devices such as---

DD I ,O~ 1473 EDITION OF I NOV565 iS OU3SOLETE

20.
shift registers. as, th!emorY medium. The memory system design uses theIr pcketconamuication concept* in which the components of the system cotwnuni-"te nly hrotgh the transmission- of fixced' size FPac~et "oiata.

SEUR LASItIIO F M3PGEWhnDae n ~Ad

MIT/LCS/TR-186

A NTBUCTURE MEMORY FOR DATA FLOW COMPUTERS

by

I VILUAM 3L ACKERMAN

jc*rSSCNfor

N, is ete SctOnl~

Maumahustta ifit ts Of Tchuilg

Cambridge aichst 02 1-39

A STRUCUR MEWORY FOR DATA FLOW COWMTRS,

Willis B. Ackerman

Submittd to the Department of Electrical Enonertn and Computer scln:9 an August 26,

A data flow computer is one which achieves enormous concurrency of

I instruction execution through ,i machine architecture that acts directly on a date dependency

graph of the pro(,ram. To handle arrays and data structures effectively, a data flow comlmter

must have access to a memory system which can handle large numbers of concurrent

[Itransactions. This thesis presents a design for such a memory. A *cache" mechanism is

presented for Improving the performance of the system and a mechanim is given for uting

sequentiai-occess devices such as shift registers as the memory medium. The memory system

design uses the "packet communicaton" concept, in which the components of the system

communicate only through the transmissicn of fixed size "packets of data

THESIS SUPERVISOR: Jack B. Dennis

TITLE: Professor of Computer Science and Engineering

ACKNWLEDGMENTS

I wish to thank Professor Jack Dennis for his encouragement and suppQrt
through this research and for providing an Intellectually stimulating environment, fin the
Computation Structures Group. I would Ilk* to thank Glen tWranker and Lynn Montz for their
helpful comments on parts of this thesis. The Laboratory fw Computer Sciance provided
facilities for the preparation of this thesis.

This research was supported by t Advanced Resuerth Projv.ts Agency of the Department
of Defense and was monitored by the Off ice of Naval Resjorch under contract no. ND00 14-

nE-0-0661.

-' -

4

TABLE OF CONTENTS

Titl page

Abstract 2

Acknowledgments 3

Table of Contents 4

0.0 Introduction 5
if1.0 Data Flow Computers 6

1.1 Date Structu~ea 12

1.2 The Structure Controller 17

2.0 Specifications of Packet Systems 24

2.1 Nondeterminacy 33

2.2 Packet Acknowledgments and Safety 4

2.3 Latency, Arbitrators, Distributrs~, and Allocatc~s 51

310 The Basic Memory Module 59

3.1 Horizontal Interconnections of "MM" Systems 3

3.2 Vertical Composition and the Cache Module 70

40 Implementation of MM Using a "Rotating" DeviceW

5,0 Structure Controller Design Considerations 95

6.0 The Deadlock Problem 104

7.0 Suggestions for Further Rewarch 108

References 109

Appendix I

Appendix 11 114

Apperndiy 111 121

5

0.0 INTRODUCTION

A data flow computer is a machine with architecture radically different from

that of existing computers. It can perform computations simultaneously on many different

parts of a program. A typical data flow computer has many arithmetic processors, and can

utilize all of them simultaneously, each executing a different instruction.

To handle arrays and other data structures, a data flow computer must have a

data structure processing facility and memory that has a similar facility to perform many

operations concurrently. Such a data structure memory is the subject of this thesis.

A data flow computer owe-, its great speed to its ability to perform many

operations at once, even though each individual operation is no faster than on 0 convcantional

computer. The same is true of the memory. The memory to be presented here has a

retrieval delay just as great as conventional memories, since no new circuit technology will be

proposed. However, it has an enormous data transfer rate because of its ability tr Fandle

concurrent transactior*. This concurrency is made possible by an uousual type of interface

cailkl pac et communication.

Section I of this thesis is an overview of data flow computers and the type of

memory that su:n a computer requires for structure processing. Section 2 is a treatment of

packet communication systems, showing now their behavior is defined. In section 3 the hasic

memory unit is described, along with a "cache" nechanism and an "interleaving" method to

improve its performance. In section 4 an implementation of the memory using shift registers

or magnetic ,isks will be given, showing how the dik.advantages of such devices can be

overcome through tho use of pacKet :omm, nication. Section 5 examines some aspects of the

processing unit thet uses toe memory, and section 6 examines the "'deadlock' problem and the

cost of overcoming it. Secton 7 presents suggestions for future research.

6

1.0 DATA FLOW COMPUTERS

As the need increases for ever faster computers, one technique for improving

performance that has drawn considerable interest in the last few years is a radicaily new

design known as a data flow computer [6] r7] [11] [15]. A conventional computer has only

one locus of control, that is, one point in the program at any given instant at which

instructions are executed. Ability to execute more than one ins.ruction at . time can improve

performance significantly, and same computers use an instruction lookahead to achieve this [3]

S9] . However, the benefits of lookshead methods are limited, and such computers are

enormously complex. Other attempts to increase instruction concurrency include "array

processors" [16], but such machines ire inflexible and extremely difficult to program.

A data flow computer achieves executional concurrency by using a different

irternal representation of the source program. Instead of representing the program as a list

of instructions to be executed in a particular order, the program is represented as a data flow

schema. A data flow schema is a directed graph whose nodes represent instr.Jctions and

whose arcs show the data dependence among instructions. The order of instruction execution

is determined solely by the data dependence - an instruction is executed when all of its data

sources have produced results and all of its destinations are ready to receive data. This

allows many insth uctions throughout the program to be executed simultaneously.,

The data in a data flow program can be modeled by "tokens" that reside on the

arcs of the graph. Each arc may contain at most one token. The execution rule for moct

instructios is as follows:

An instruction (other than a merge or gate) is r,3ady tor execution whenever all

of its input arcs contain tokens and all of its output arcs are ampty. When an

,struction is executed, the tokens on the input arcs are absorbed, The

function denoted b- ihe instruction is Lomputed, using th8 V uS in the

absoi bed tokens as input daia A tokeis containing the functon va!ue ,s placed
¢" Or, .i h oitii! ,- r

7

There are a number of ways of 1andling decisions and iteration control.
Perhaps the simplest is the use of special instructions 6 T, and F. These receive a boolean

value on one Input (the "control" input) and use It to contrc,! the passage of data from another

Input. Their execution rules are as follows:

The M (merge) has a control Input and two data inputs labelled "T* and "F". To

be ready for execution, there must be a boolean token on the arc leading to its

control input. Furthermore, the arc leading to whichever of its T or F input

matches that boolean token must have a token, and all output arcs must be

empty. When It is executed, the control token and the dat, ,oken at the input

In;cated by the control token are absorb3d. Copies of the token at the

selected date input are placed on each output arc. Input tokens are not

required at the non-selected data input, and if any are present they are not
~absorbed.

The T (true gate) and F (false gate) instructions have a control input and a data

irput. They are ready for execution whenever both nput arcs contain tokens

and all output arcs are empty. When they are executed, the iniputs are

absorbed. If the control input matche tV,) name of the instruction, copies of

the d:'a input are placed on tho outpu: & . If not, no tokens are placed on
~the output arcs.

Constai~ts can be generated through the use of functions of no arguments. An
instruction to perform such a function has no input arcs, so, in accord-nce with the execution

rule, it places tokens on its output arc as fast as thay are removed.

~8

Hr. is an example of a data flow schema !t rompute the fatc,rial fution:

in

F
T FT F

MM F

II

Boolean inputs to M, T, and F instructions are drawn as open arrows. Tokens existing in the

initial configuration of the program c ru drawn as filled-in circles.

The t%,jnevIor of a data flow schema under tho execution rules has a very

important props'y - it is determinate. This means that the output of the program is

determined orly by the inpui, and is independent of the timing of instruction executions. All

rum of such a program with the same data will yield the same resuits. Determinacy follows

from the facts that

(1) Each instruction produces a result whi,'h is a function unly of the values of

its input tok'ens, that is, each node of the schema is determinate.

(2) The value of a token does not change In any way while It resides on an arc.

(3) The execution rules, and fact (2) above, qualify the schema as a valid

interconnection of autonomous communicating systems.

Iis an established result that st ch an interconnection of dte-minate systems is eterminte

1.0.1 DATA FLOW COMPUTER ARCHITECTURE

The memory syst~vr and structure processor that are the subject of this thesis
are Intended to be part of a computer of the type described by Dennis and Misunas [6) [7]

Such a computer Is composed of units which use packht communication [8] f or transfer of
data. The oi'ly means of dots transmission among ths units is the transmiss'Oon of fixed size

messages called packets. There is no clocX or synchroni7 4 information.

The four main pa's of the data flow computer are the instruction memory,
arbitration network, functional un i,u' distribution network. For structure processing, the

structure controller and structure memory ar3 added.

distribution arbitration
network network

instruction

iemory

(~ ~functional L~

structure7

coritroller

structure

memc r y

To executea o ate tiow p-;ugraw, its scherna is on~uou, inio the in~truction

FTal' 1 ath i, - li'0 yl err10 I t~r d, ~ o o i L- IL II ar . d mt th~tiwv iwe in

10

structure operation, etc.) and the address of its destinations. The latter are the cells to

which outgoing arcs point. The instructitn cells also have receiver registers to ,Cntain

incoming "tokens". When all necessary receiver registers become full, an instruction cell emits

an operation pacet consisting of its operation code, the dot, from the receiver registers, arid

tle destination addresses.

Any given program his a great nunber of instruction cells, each sending

operation packets only occasionally. These streams of packets are merged by the arbitration

network Into a small number of dense streams. The packets coming out of the arbitration

network are sorted according to operation code and sent to the appropriate functional units.

In the case of structure processing instructions, they are sent to the stricture controller.

The functional units or structure controller perform the indicated operation and form, for each

destination, a result gacke consisting of the destination address and a copy of the actual

result. The result packets go to the distribution network where they are sorted by address

and sent to the appropriate receiver register of the appropriate instruction cell. (The

dastination address Includes the receiver number.) If the instruction is a structure operation,

the struclure controller may send numerous command packets to the memory and receive

result packets back during the course of its computation.

The preceding description does not quite implement the execution rule: An

instruction cell should wait until its "output arcs*, that is, the receivers of its destinatiors, are

empty before iscuing an operation packet. There is no way for an instruction cell to "see" its

destinations' receivers. The problem is remedied by using, where necussary, acknowledgment

tokens sent from a cell's destinations to the cell itself. The acknowiedges are treated like

invisible argtiments, except that they contain no data. When a cell i4 executed, it may send

resu!t packets to some destinations and acknowledges to others. A cell is r.ot ready to be

executed until it has received all necessary real arguments and all necetsary ackilowlediges.

Acknowledges are pliced in the program whore ne-,ssary to ensure xh.-t, w!en a (ell his

re(,o/ev e ,1 rg--,ients and ac nowtedges, its destiralton-' rece,..e, rg'it,!ers wil be empty,

,rhe ackrowledges should nut be confused witl) th" ma-)et (.ki:o3 Wies to btj dea-hDiupej

later

11

A constant need not be implemented as a separate node of the data flow

schema. It can simply be loadd into the receiver register of the instruction call that uses it,

and marked in such a way that the instruction cell knows that that register is always full.

An additional part of the data flow computer, not shown in the preceding

diagram, is the host computer. This is a computer of conventional design, which has access to

the memory units and control functions of the data flow computer. It is used for diagnostic

testifg and for initial loading of the instruction memory and structure memory. It does not

participate in the actual data flow computation.

12

1.1 DATA STRUCTURES

In order to handle arrays and data structures in a data flow computer, it is in

most cres recessary to allow single tokens to have entire structures as their values. (Some

programs which use arrays of fixed size, such as Fourier transforms and other signal

processing algorithms, can make do with arrays of instructions with one token on each arc.

However, this approach is impractical for very large arrays or for dynamic structures.) For
*his ras On; we pro-ora x data structur. fe.ilitv that alows tokens to have structure valu..

The simpiesi type or struciure Mai permits fuii gener~lity is the biary tree which is

recursively defin -; ; bnry Irs; i; an ,l;e,nt;ry "objact" Irom some set, or is a

concatenation of two binary trees. Such trees form the basis for the programming language

USP. (4] (13] For definiteness, the structures used in a data flow computer will be assumed

to be binary trees.

The "elementary objects" are all data values other than structures that the

computer can handle, plus the special object nil. Elementary objects thus might Include

intagors, boolean values, reals, etc.

The principal operation on a data structure is selection. A simple selection

takes a structure and a single bit. If the structure is elementary and not nil, the result of the

selection is undefined. If the structure is nil the result is nil. Otherwise, the structure is the

concatenation of two structures, and the result of the selection is the first or second of these

If the bit is zero or one respectively. A compound selection takes a structure aon a string of

bits, and gives the result of applying simple selections repeatedly, using the buis in sequence.

The bit string is called the selector. Let S be the following structure:

13

5

1 4 nil 3.14

SELECT(S, T1] - 5 (a simple selection)

SELECT[S,'001'] SELECT(SELECTISELECTES, '0'] Vj],'1'] -4 (a compound selection)

The true *meaning" or "value" of a structure can be defined to be the set of
orderedS pairs of selectors that yield elementary values other than nil, along with those values,

Thus the structure S denotes the set

141 simply denotes a substructure with no elementary items at all.

Using this definition of the meaning of a structure, there is a structure

corresponding to 3ny finite set of ordered pairs of selectors And elementary values (excluding

nil) such that no selector In the set is an Initial su~bstring of another. The structure nil

denotes the empty set.

SEt.ECTfstruc, sel]l

The elementary value v if struc contains the pair <sel, v>

Undefined if <s, v> e struc where s Is a proper initial substring of aol

The structure {<a, v> -fakls, v> e struc Iotheorwise

'14

Structures can be built with the appemnd operation. APPEND places a given object (structure

or elementary value) a-,t* a given structure with a given selector, removing whatever
substructure previously existed there. In the set-theoretic model,

APPENID(struc, new-4a, ssll.

(st'ruc - (<,v> Ione of st or s is an Initial substring of the other)) U < set, new-val>

if new-val is elementary.

(struc - ((5s, v> Ione of sel or s Is an Initial substring of the other)) U
(<sel's, v> I <s, v>' e new-vet) if new-val is a structure, including Liil.

Letting S be the structurc defined pieviously, APPEND[S% 7, '01] is

5

7

1 4

The substructure containing nit and 3.14 disappears.

1. 1.1 REPRESENTATION IN MEMORY

Structure ciin be 'mplemented on a leis flow computer in the some way that

they at.z commonly implemented on ordinary computers - as lintw-d lists of *cells" In a memory.

An elementa~ry oi,-rt is represented by the object itseif. A concatena'on is represeunted by

is address in memory ot % -all containing the representations of th two subztructures. In

either crise, a structure is repres ,nteu - a s.1J amount of information. The huge amount of

lnformAh.wo that constitaies the sht, urre itself io. inside the mr~mory, and tha representtation

is merely a pun~'tr to this. Tiie operation of selectio-n ~ it simple. Celit are read from

15

memory and the appropriate halves of the data used, under control of the selection bits.

1.1.2 SHARING

Such an implementation leads to the possibility of a single structure in memory

being shared (or partly shared) by several parts of the computation. In a data flow computer,

two tokens might have the same pointer as their value. This Is of course very desirable for

economical memory use, but it makes the APPEND operation difficult. The problem is that

modification of pointers inside the memory can change the value of structures other than the

intended one, if structures have parts in common. In many programming languages, this is

considered a reasonable and even desirable effect. For example, the LISP language has

* instructions to modify existing structures. In a data flow computer, however, this cannot be

permitted for reasons of determinacy. In order for a data flow computer to be determinste,

the nearin , the set-eoretkc sense given previously) of a token bearing a structure value

must not change while that token resides on an arc. Since other instructions. including

APPEND's, can be executed while a token resides on an arc, APPEND must never change any

substructures that are shared with other structures.

In the proposed structure processing facility, each cell has a reference count

which makes it easy to tell what substructures are shared. Whenever the APPEND processor

is tempted to modify a cell thtt is shared with ancther structure, it makes a copy of the cell

and modifies the copy instead. For example, if S is a pointer to the following structure in

memory:

2

I a nil 3.14

O';' h ~ ei rrvlrfatut PE r,7 U i-

16

2 3

T he nodse that originally had a reference count of two may not be modified, so a copy is maJe,

and Its refersnce count Is th-eefore reduced to one. The structure controller to be des-cribed

In thea roxt sectom will perform these tasks.

r

17

1.2 THE STRUCTUIE CONTROLLER

In thic section we will outline the behavior of a processing mechanism that uses

the structure memory to provide a structure facility for the data flow computer. The basi;:

behavior of the structure contrmllsr is that it receives operation packets from the arbitration

network and delivers result packets to the distribution network. it holds the state information

for structuie operaticis in progress, and performs memory operations by sending packets to

the memory and rez.elving packets in return.

Tn purpose of this section is to show how the structure controller will use the

memory, rither than to give a detailed specification for the structure controller. Th, refore, a

number of design decisions will be made arbitrarily. For the most part, the requirements of

the siructure memory are independent of these decisions. For example, the memory design

would not change If ternary trees were used instead of binary ones.

Some aspects of the design of the structure controller will be considered in

more detail in section 5.

1.2.1 DATA FORMAT

The memory space is divided into "words" or "cells", each of which holds one

node of a structure. Since the momory Is used for the storage of binary trees, the words

representing nonterminal nodes contain two pointers to other nodes. The convention will be

made that all words of the memory will be divided into halves, called the left half and the right

half. Each half has an "elem" bit bit indicates whether iR contains an elementary item (terminal

node) or a pointer to another word in the memory. If the bit is 1, the half word contains an

elementary value. The interpretation of that half word is then the exclusive responsibility ot

the rest of the computer, unless it is nil. The structure controller treats 1'ny elementary value

other than nil simply as a collection of bits. Ariy 1!ype information (integer, floating point

number, character, etc.) must be encoded into the half word along with the data.

The structure graphically represented as follows:

A'8

5 6

might be realized by address 102 In tho following memory corniguration:

location 102

11 I I~ 01071

location 107

The bit at the left end of each half word is the "elem" bit

(A different convention could be used, in which each elementary value takes an

entire word Instead of holf 9 word. The two conventions are equally powerful, and differ only

sllightly In execution. The "half word" convention will be used for definiteness.)

1.?.? MEMORY MANAGEMENT AND GARBAGE COLLECTION

All words of memory that are not part of a structure are kept in a collection of

free tor;!e lists. (There are several such lists, rather than one, in order to maintain a high

rate of processing. This poi,: will be discussed in section 5.0.5.! Whenever the structure

controllor needs a word in order to create a nods, it takes it from one of the lists. Whenever

a nods is destroyed, that is, at pointers to it disappear, the word containing it is returned to a
free slorage list.

Each node of a structure has a reference count which is the number of

pointers to that node that exist, whether in other nodes or in the rest of the computer. (The

latter includes operands waiting in instruction cells and packets in transit through the

arbitration and distribution networks.) The atructure controller inrreases or decreases the

reference count of each node as pointers to it are created and destroyed. Whn the

reference count Is decreased to zaro, the node disappears, so it is returned to a free storage

Iit. Whenever this happens, any pointers that the node contained disappear, and so the

refereno counts of the nodes pointed to must be decreased.

The choice of a reference count strategy for memory management instead of

the "mark and scan" method commonly used In LISP systems was made for three reasons:

(1) The mark and scan method requires a garbage collection operation which

must find every reference to every structure. Since references exist in

packets in transit, it would be necessary to stop the entire computation .nd

wait until all packets rtop moving beforo i garbage collection comm3nr.es.

(2) The reference count is needed anyway in order to implement the copying

rule tafficlently. Whenever the structure controller needs to modify a node

as part of an APPEND operation, t may do so safely if the reference count

It one. If not, the node must be copied.

(3) The objections to the referente count method in many list processing

systems, that it is difficult to recover circular lists, does not apply here.

Because of the copy rule, circular lists are never treated.

1.23 TIE STRUCTURE OPERATIONS

The structure controller to be proposed implements the following program level

operations:

- ------------- ~--~.- -

20

SELECTstructure, selector) - The selector is a bit string of definite length. The

structure is traced under control of the bits in the selector, starting with

the leftmost bit. A zero bit selects the left offspring and a one hit selects

the right. The item at the selected point ih the structure is returned,

whether it is elementary or a substructure.

APPEND(structure, object, selector) - Returns a structure similar to the given

one, but having ie object at the place specified by the selector. Whatever

was at that place in the original structure is absent in the result. Th-

object may be elementary or a structure. Any part of the original structure

that is shared with other parts of the computation is not modified. The

controller copies part or all of the original structure as necessary to be

sure that this is the case.

The structure controller recognizes the special constant nil which, while

elementary, Is also the structure with no selectors. Nil Is used as a terminal node of a

structure to indicate that there are no objects beyond that point. Any part of a structure

may be deleted simply by using the APPENO operation to replace it with nil, and a structure

may be created by appending something to nil. It is assumed that the constant nil is explicitly

available '4o the programmer for these purposes. The controller optimizes all structures,

replacing with nil any substructure all of whose terminal nodes are nil.

There are two more operations performed implicitly by the controller. If any

c'peratlo returning a structure value specifies more than one destination, the reference count

of the result must be appropriately increased. Also, if any operation discards a structure

value, the reference count must be decreased. It follows that the conditional operations such

as tre and false actors must be executed by a structure controller if the objects being

switched are structures.

21

1.2.4 THE MEWRY OPERATIONS

The structure controller communicates with the memory by sending command

packets and receiving result packets. These packets are given names describing the
, operatfor 'W 'WW-e perflotmed,

I ji- To read a word of memory, a FET (fetch") packet is sent, giving the address.

S,7.01 iarni,ory returns * LOAD iacket wih the data. Between the FET and the corresponding
r LOAD, many other packets might be sent and received. This is a consequence of the

parallelism of the data flow computer: just as with the other functional units, fhe rate at

which structure operations are performed can be increased by allowine many operations to

be in progress simultaneously. This concurrency is made possible by the use of packet

communication at the memory Interface. The FET packet that begins an opere'Von ind the

LOAD packet that ends it are dcstlnct events and might be separated by a great number of

other packet transmissions and receptions. Each LOAD packet is identified with the FETI packet that cause t by means of the "tg", to be described later.

Each LOAD packet contains the sddress of the word and its reference count, as

well as the date. The address is probably not used by the structure controller, but is included

as part of the specification of the memory -,odule because it is needed by the cache

mechanism io be described in section 3.2. The structure controller uses the reference count

in order to tell when a node may be written on without heing copied (if count - 1) and when

a node should bI destroyed (if count - 0).

To increase or decrease the reference count of a word, the FC'T*; or FET"

packets, respectively, are sent. These are similar to FET, except that the reference count is

first modified. The mernory replies to them with LOAD+ or LOAD- packets which are similar to

LOAD packets. In some cases the structure controller does not use the data in a LOAD + or

LOAD- packet, but it does not really cost anything for the memory to send it.

To write on a word of memory, the structure controller sends an UPD

('update") packet giing the adress, data, and reference count. The reference coo-fl! 1S

22

presumably one, but the specification of the memory module allows an arbitrary count to be

given. (In an actual implementation of a structure controller and memory, unnecessary fields

would be omitted where possible, so thst the controller would not send a reference count in

UPO pockets or receive an address In LOAD, LOAD', or LOAD packets.) The memory sends no

reply to an UPO packet.

There is another command that the memory recognizes. The CLR packet waits

until all pending operations on the given word are complete, and then returns a DONE packet.f It is not used by fhe structure controller at all, but is required for operation of the cache.

1.2.5 THE TAG FIELD

Every FET, FET +, or FET" packet has a field called the "tag" field that

constitutes a reminder from the structure controller to itself, telling it what to do with the

result of the operation, The tag field of a command packet is returned unchanged in the

result packet.

Consider the case of a simple SELECT instruction. When the instruction cell

fires, an operation packet goes to the structure -ontroller containing the operation code, the

structure, the selector, and the addresses of the the instruction cells which are to receive the

result. There might typically be three such destination addresses, each about 20 bits long.

The structure controller can simply iake them the tag field of the "fetch" command to the

memory, and then use them when they come back in the re.;ult packet. In the case of more

complicated structure operations, such as APPEND's with compound selectors, there is a large

anount of state information that must be remembered through the many memory transactions

that make up the structure operation. In addition to the destination addresses, there is the

datum to be appended, the structure to be ultimately returned, the remaining selector bits,

and a few pointers. The total amount of such datt typically might be 200 bits or more.

There are two ways of handling this information. One method is to include all

of it in the tag field of com,-inds to the memory, so the structure cont oiler doesn't need to

store oiny information about the state of ongoing structure operations. When the result

23

packet comes back from the memory, the structure controller locks at the entire packet

Including the tag field, decides what to do next, and produces a new packet to send back to

the memory. Th!s method (the "memoryless structure controller" method) is efficient, but it

requires an extremely wide data path for all memory transactions, and it gives rise to very

difficult problems of avoiding deadlocks.

A second method Is to store all of the state Information In the structure

controller. This requires that the controller have a memory with a capacity of 200 its or

more for every structure operation that can be in progress at one time. In this c:se only the

address of the block of memory in which the state information is stored must be put in the tag

field. If 256 simultaneous structure operations are allowed, the tag field only needs to be 8

bits.

In ,-ther case, commands to the memory contain a tag field. The memory

echoes the tag bach to the controller I" the result packet.

1.2.6 THE DATA ANO REFERENCE COW FIELDS

The contents of each menvory word consists of a data field and a reference

count field. The data field is further divided into two pointer fields, leaf-node indicator bits,

perlhzps a bit to indicate that the cell is on the free storage list, and perhaps type indicator

fields for elementary values. All of these are significant only to the structure controller, and

are irrelevant to the memory. The memory can simply consider the data to be a homogeneous

field. In practice, it might be about 40 to 80 bits long.

From the memory's standpoint, the reference count is simply part of the data

associated with esach word. In some transient cases it might become negative in sone parts of

the ramory sytstem, although the structuta controller will nwer see a negative reference

count. In a typical realization, the referent:e count field might ,ie about 8 to 15 bits long.

Ircorning and outgcing pac'ets that read or write a word of memory have data

and reference count fields that correspond precisely td the fields in memory.

24

2.0 SPECIFICATIONS OF PACKET SYSTEMS

In this section we will develop methods by which one may describe how a

hardware system using the packet communication principle is constructed, how such a system

behaves, and how oi" may prove that a system constructed in a certain way behaves in a

certain way. Examples will be given of simple systems that illustrate some of the important

potnts of the design method.

2.0.1 FLTIONAL SPECIFICATIONS

Because of the restricted wh. in which packet communication systems interact

with their environment, it is easy to describe how such a system might behave. Since the

only interaction is through packets, a system's behavior is completely known if it is known

what packets it will transmit in response to whatever packets are sent to it. One other piece

of information that might be available, but that we reject, is the time when a packet is

transmitted. It is impermissible for a system to be described as, for example, transmitting the

result of a computation between 1 and 1.5 microseconds after It receives the datd. The only

requirement is that it eventually produce the result. (This is not to. say thai speed is

unimportant. Lihe any other computer, a data flow computer is ,lstgned with operating speed

in nind. The conditions for correct behavior are Independent of speed, however. If any

component of a data flow c;omputer is replscpd with one that operates at a different speed,

the computet will continue to function io~wrnctly.)

Since a module of a packet communication system may retain internal state

information (though many useful modules do not), te "result" packets that it transmits may

depend not just on individual input packets, but on the entire history of input packets. All

packets that pass through a given input or output port have a definite order among

themselves. The ordered sequnce of packets that have passed through a port from the time

that the system was started up until a given instant is the history of the port at that instant.

A hsto, . of a port will be written by listing the packets in parentheses, separated by

semicolons,

25

There is a partial order on histories: X Y if X is an initial subsequence of Y.

For example:

U 13 34)1 U 3 4; 7)

but (1 ; 2 ! 4) and (1 ; 3; 4) do not satisfy this relation in either order.

Since histories only grow longer as time progresses and symbols already in a

history never change, a history at a later instant is always greater than or equal to a history

at an earlier Instant.

The length of port history X Is denoted lXi. The individual packets of X are

X1,X 2 . .Xp.

There is no defined time order among packet arrivals on different ports, so it i-

useless to represent them as a single sequence. Instead, a history array is used, which is a

collection of histories, one per port. The partial order on histories can be eutended to arrays:

A > B if each history of A is greater than or equal to the corresponding history of B. Like

histories, history arrays increase as time progresses.

The description of how a system is expected to behave is quite simple. 11 is a

description, for every input history array, of what output history array the system will

eventually produce. "Eventually* means in finite time for finite histories. For infinite

histories, it means that, for any K, the first K packets will be produced in finite time. This is

bocause a system which is expected to have an infinite output history cannot ever transmit its

entire output in finite time.

A description of th dependence of output history ;rrays on input arrays is

called a functional specification. It is a cascription of how a system is expected to behave.

The major problems in tht field of packet communic3tlon systems are proving that a system

built In a ert.;n way obeays a certain functional specification, and proving that the

intwrconnactlon of systems r nown to obay cart-sin tunictonal t fcifcations obeys s'me other

26

functional specification.

If, for any input array, the functional specification sta:tes that there is only one

possible output array, the system is determinate (sometimes called functional, but that term

will not be used here). In that case there is a function, say f, mapping input arrays to output

arrays, such that, if input X (and no more) is delivered to the syste'o, f(X) will eventually be

X produced. If further input is then given, the input history is Y with Y > X, and output history

f(Y) will be produced, Since the system cannot retract any of its previous output, f(Y) >_ f(X).

Fr m this it is easy to see that f is monotonic in that:

X > Y , f(Y) f(X)

If there is more than one legal response to a given input array, the system is

nondeterminate. In that case a function Is also used to define the functional specification, but

f(X) is the set of all legal output history arrays. Functions defining the specifications of

nondetermiate systems also obey a sort of monotonicity property, which will be given later.

It is possible for an Interconnection of nondeterminate systems to be

determinate. For example, a data flow computer is determinate even though its arbitration

notwork is not. An interconnection of determinate systems is always determinate, and its

function can be computed explicitly from the functions of the components [1 .

2.0.2 DESCRIPTIVE SPECIFICATIONS

N" Since a major task of the system designer is to demonstrate that a system built

in a certain way obeys certain functional specifications, it is necessary to describe in a

reasonably formal wd how a system is built. A wiring diagram is one formalism, but it is far

too rigid and implementation-dependent. A higher level method is needed. When a system is

assembled from components, all using the packet communication pinciple, it is of course easy

to describe the Interconnection, telling what por s of the various systems are connected to

each other. For systems that cannot be so decomposed, the descriptive 4pecificatlon vill be

given in terms of a program written in an extremely informal ALGOL-like ianguage. This

27

language is a subset of the Architecture Description Language [10] which is under
zdevelopment.

In the language we will use for giving descriptive specifications, packets will

look like data records with a title and one or more data fields, for example: "WRITE(3, 7)".

This format is purely cosmetic. In the actual hardware implementation, a packet is nothing but

a collection of bits. The fields are simply divisions of these bits into subsets that the sender
and receiver both agree upon. The titles are just encodings of another field.

2.0.3 AN EXAMPLE OF A DETERMINATE M,,EMRY,

A functional and descriptive specification of a system called MEM will now be

given. MM is a random access memory with an Input port IN and an output port OUT. Two

types of packets may be delivered to it:

WRITE(addr, data) writes the data into the given address

READ(addr) fetches the data from the given address

The "addr" and "data" fields contain numbers that range over som3 finite and fixod spaccs.

Theire is one output packet type:

RTR(addr, data)

(RTR stands for "retrieve")

Every READ packet delivered to MEM results in transmission of a RTR packet

bearing the address and the current contents of the memory. Every WRITE packet stores its

d:ta in the memory and returns no result packet. The initial contenis of each address of the

memory is zero.

For a given input history, the contents of the memory may be easily

determined. The contents of each word is simply the data field of the last WRITE packet

having that address, .r zero if there is no such packet, Tlhe fun ion f.. realized by this

28

mmory is.

1MEM

If X input history and Y output hitory,
F f. XYwhere

IVI the number of occurrences of READ(--) In X

RTR(addr, data) if the 1th READ(~) in X is REAL~addr)

and the last WRITE(addr,--) In X before that READ

Y, is WRITE(addr, data), If there is such a WRITE

LRTP(addr, 0) if the I" REAIX--) in X Is READ(addr)

but there Is no WRITE(aeJdr,--) before Ht

NM mtion: WRITE(addr,--) means any WRITE packet having the spervif ed odor flaid mod

anything at all in tho data field.

A flumllonal speciliesnion oi M4EM imiry cunu;66 V u tfik the" IXM realize s

fkmthat is, that is the Input history X is presorted to it, it will eventually transmit output

history fpc(X.

This specification soys nothing explicit about the states of MM This is a basic

property of tht 111MOry "Lrction approach to system tecification - ever, for a device whose

purpose is to have states, -Luch -s a mmory, tho specification does not mqnfion the stites. 04

course, the memory does have stades, and the state is a fon.tiom of the input history, Since

th6 liput history roerds all of the information ths, has evor gone into the- syetam, It contains

anough information to determine tha state,

We now show how the system MEM may be built: The systv-m uses a re

random access momory, with a copaciy of oot word for 49cl- poo-til valulb ot the 'adiir'

29

field of incom Ing packets. Wo choose some obvious correspondence between the values of

ttrn "addr" field and word addresses, Each word can contain any of the possible values of the

Wit ' dtta" field of incoming WRITE packets. We choose some obvious correspondence here also.

The memory Is initialized with all words containing zero.

The slgoriti nf the Implementation of MEM Is as follows: If a packet

M.RITE(addr, data) Is received, the data field is written into memory at the word address given
by the addr field. Hf a pecket READ(addr) is received, the word at the appropriate address is
niondlestructively read, and a packet RTR(addr, data) containing the data fetched from memory,

This system may be implemented by the program which follows. "Memory* is

an array which reprettents tho octu,.4 memory.

Mcass5 starts at A

input pq~ IN

Sbtpart OUT
yar command, oddr, data

array momory mnit 0

wait for input

A- until packet is available at IN doI

command :- packet fom port IM,

analyze input packet

if command - READ(--) then

let command - READ(addr),

send RTR(addr, memory(addr)) at port OUT

else

30

let command - WRITE(uddr, data;,

memoy(iddr) :- data

goto A

Notes:

(1) The statements for receiving and ,ransmitting packets are excessively primitive. Slightly

improved versions will be presented later.

(2) The expression RTR(addr,data) means "a RTR packet whose fields are filled with the

current values contained in addr and data'".

(3) The "--" in conditionals has its usual meaning. "If packet - WRITE(3,--)" means "if packet

is a WRITE packet whose first field is 3".

(4) The "let packet = pattern" statement is an assignment statement that sets the variables

appearing in the patterr, to have the values of the corresponding fields of the packet. "let

thing - WRTE(addr,--) means "if the type of thing is not WRITE, it is an error; otherwise

set addr to the first field of thig and Ignore the second field.

'Z We now prove that this implemenia',ti satisfies th,i specification fMEM First, we noed to

show that the menory state equals the system state (as defined by the input history) under

the following correspondence:

For all X, the contents of memory address X for a given input history is

zero if the input history contains no packets WRITE(X,--)

Y if the history does contain such packets. and the last is WRITE(X,Y)

Proof by induction on the length of the history at port iN For length zero, all cells contain

zero by in ';alization, 9nd the history ,o, tains ro WRITE packets at all. Otherwise assurn

r 31

{ ~ 'true for any h,'story of length K and prove it for K+1.

if IN., READ(--), nothing was writion into memory between receipt of INK
and INK., ,so tho memory state did not change. The existenme of WR1TE(--,--) packets did
not change either.

If IN. WRITE(addr, data), no memory cell other thhn addr changuid, and the

Yt ~existence of WRITE(X--) packets dtd not change for X P, addr. The contents of memory cell

addr is now data an h as R (addr,--) In the history is now obviously WRITE(addr,

dasta)

Next, we prove correctness of the implementation. If the input history -X, we

will show that fM(X) will appear at the output. This proof is also by induction. If lXi - 0,
~MU-(u h mlmnainseiies no output except in response to input. Now

suppose X1 *x 1X2 -. 1 - Lot X ~ 2 .. .By Induction, fMEM(X) appeared at the

output when X was the input history. When x~ N# rrived, the system transmitted no output If

F was a WRITE, and transmitted RrR(addr, memory(addr)) if x N.was READ(addr).

Therefore Ohe response to X' Is

fM(X) concatenated with

F if X1~ WRJTE(--,--)
RTR(addr, mernory(addr)) If x~ N. READ(addr), where the memory

L state is that left by X

Now iLt (X'/I - IfMEM(X)I + I if x.., is READ(--), which is the length of the

response to V'.

Also, If x.., "WRITE(--,--), fAw("1 I fMFN(X). arnd if x READ(addr), iMEM(X*)

f fMEM (X) conc:ater, -!ad with RTR~addr, D), whoes z -the data field of the last WRITE(addr,--)

32

packet, or zero if there Is none. This is Just the contents of memory word addr.

The response to X' is therefore f

This syste*, has a few sintplifying properties that a general system of the sort
to be used in the packet memory system can't have: t

1) It is determinate.

2) Its behavior is ,defined for 311 possible input histories, that is, there are no illegal inputs.

3) It operates infinitely fast, that Is, It is impnssible for input commands to come too fast for it

to handle. (Note that the above proof says "when xN, 1 arrived, the system transmitted 2)

2.1 NONDETERMINAeY

Nondetermlnate systeme. cai, take a wide variety of forms, and the problem of
formalizing the behavior of all nondeterminate systems is far too complex to be treated in this

thesis. Only the types of nondeterniinticy that arise in connection *'In the structure facility
for the data flow machine will be treated.

The principal type of nondeterm~nacy that will arise in packet memory systems

Is the removal of the requirement that the RTR pockets be returned in the same order as the

READ packtets that gay, rise to them, For example, the input history

WRITE(l, 1); WRITE(2,22) ; RIiAD(l) ; READ(2) could result in

*RTR(1,11) ; RTR(2,22) or in RTR(2,22) ; RTR(1,il.)

The system MIEM Is too simple to t6isplity this sort of nondeterminacy. For example, MIEM
would return RTR(1,1 1) as soor. as it received the first READ packet. It w,uld not yet "know"

that it was about to receive a second READ packet which would give it the optioil of
producing its output packets in either of two orders. Later, we wjil nxhibit implementations of

systems which can masningfully take advantage of this nondeterminacy. For now, we wili just

have to accept that such Implementations (that is, descriptive specifications) exist, and

examine the form that the functional specification for such a system might take,

2. 1.1 FUNCTIONL SPECIFICATIONS OF NONDETERMINA fE SYSTEMS

A nondeterminate system can give any of several legal output histories in

response to a given input history. The "function* defining the system's behavior is therefore
miultiple valued. On,, ay to handle t~iis situation is to treat ine behavior of a system as being

define.d b) a relation, ;nstead of a v'unction. The method to be used here, %h~ch is completely

equivalent, is to use functions whose lalues are sets of output histories. For example, in the

System fWEM that we are developing,

34

fNO (WR!TE(1,11) ; WRITE(2,22); READ1); READ(2)) -

{ (RTR , 1) ; RTR(2,22)), (RTR(2,22) ; RTR(1,1 1)))

The situation may arise that f(X is empty for some X. This means that X is not a

valid input history, and the behavior of the system is undefined. This is different from the

situation in which an illegal input gives rise to a well-defined "error* response (packet) from

the system. An "error" packet is certainly more desirable than saying the system behavior is

undefined, but some situations, such as receiving acknowledges for packets that were not

sent, ore so pathological they must simply be assumed not to occur. Furthermore, at some

r ."levels of detail in the description of a system, it is convenient to ignore error conditions if one

can prove that they won't occur when the system is functioning properly.

r

A functional description of a nondeterminate system is therefore a definition of

a function which maps input histories into sets of iutput histories. It is u.,ually most

convenient to describe it as a predicate defining which histories are in f(X) for a Igiver? X, and

that predicate is often the logical AND of a number of other predicates, so the functional

description looks like:

Y is in f(X) if

P (XY) and

P2(XY) etc.

Th 3 rule for realization of a function Is as follows: A system realizes f if, given input history

X with f(X) nonempty, it will eventually produce some output history in f(X).

The multiple valued functions realized by nondeterminate systems must obey a

monotonicity property as follows:

35

NONOETERMINATE tA)NTONICITY (NDJ-MONOTONICITY)

If Q and P are input histories and Q P, then for

any output history X in f(P), if f(Q) Is nonempty there

is a history Y In f(Q) with Y a X

Roughly speaking, this means that receipt of a legal input symbol will never

make the system unable to proceed legally. The purpose of the qualification if f(Q) is

nonempty" is to allow for the possibility that ant Illegal input packet might make the system

F u".eble to proced

We can now give the functiong) specification for the nondeterminate memory

NOMEK which can arbitrarily mix RTR packets for different addresses.

fNDMWEM

If X - input history and Y -output history,

Y Is in fNoEu(X) if

(1) Y consists only of packets RTR(--,--), and

(2) Fer ill addr, the number of READ(addr~s in X -the

number ot RTR1.adcr,--)'s in Y, and

(3) For all addr and K, the Kth RTR(addr,--) in Y, if it exists, Is RTR(addrvai)

where last ViI1TE(addr,--) in X be! onn Kth READ(addr) in X

is WRITE(addrval) if such a WRITE(addr,--) exists, or val - 0

if no WFITE(addr,--) exists before the Kth READ(addr) in X

The system NOMEM has the property that the data returned in a RTR packet is

the data in the memor) (that is, the daeta In the most recent WRITE command addressing that

cell) at the instant of the READ commbrd cotresponding to the RTR. At thie instani the RTR

packet Is sent out, iinovthar WRITE co~mmand might have already been received, but that WRITE

will have no effect on this RTR packet.

36

Example

input: WRITE(A,1) READ(A) WRITE(A,2) READ(A)

output: RTR(A,1) RTR(A,2)

-+ time

At the instant the first RTR packet was returned, a WRITE command changing

the data from I to 2 had already beoen given, but the function fNDMEM requires that the value

I be returned.

Here Is a rough outline of an implementation of a system that realizes fNDMEM

SYSTEM *1 (realizing fNDMEM)

(1) When a WRITE command comes in, write on the word of memory instantly.

(2) When a READ command com es in, fetch the word from memory instantly,

form a RTR message, ari put it into a buffer or queue.

(3) Take messages out of the buffer and return them as output packets at any

time and In any order, sLbject to the restrictions that:

(a) every packet in the buffer Is eventurlly removed,

(b) whenever a packet is removed, it must bo the oldest in

the buffer among those with its word address (that is,

the buffer is first-in-firzt-out (FIFO) with respect to

each address).

The implementation given above still requires that operations on the memory be

instantaneous, so it :s not very useful because it doesn't take advantage f thr, delay between

a READ packet and the RTR packet that results. The data in the RTR packet must be the

contents of the memory word at the instant the READ/RTR interval b.fins. We would like the

system to be able to use the value of the memory word at a instant during the READ/RTR

interval. Here is an example of a system that tNkes such liberty:

37

SYSTEM #2 (purported realization of fNMEM)

(1) When a WRITE command comes in, write the word of memory instantly.

(2) When a READ command comes in, put the message READ(addr) in the

Pending Read Buffer (PRB).

(3) Take messages off the PRB at any time and subject to

the same restrictions as befure, iiamely that every

message is eventu-!y removed and the buffer is FIFO on

each address. When the message READ(addr) is taken from the

Pending Read Buffer, fetch the data from memory and form

a message RTR(addrdata). Send fhe latter to the

Finished Rced Buffer (FRB).

(4) Take messages off the FRB at any time and in any order

subject to the same restrictions as before, form a RTR

packet, and sand it as output of the system.

This implementation does not realize fNDMEM I In the packet timing graph after

the definition of fdMEM , the first RTR packet might have value 1 or 2 if this implementation is

u.sed. (The sectrnd RTR packet will always have data value 2.)

We might like the system to take even more liberty, by performing memory

writes, as well as reads, whenever it wishes. Such an implementation might be as follows:

Sysk.m *3 (purported realization of fNDMEM)

(1) When a WRITE ptir.st cums in, put the message WRITE(addr,data)

on the Pending Write Buffer (PWB).

(2) Same as (2) in System .2.

(3) Take messages off the PWB subject to the same restrictions

as before, and write the data into memory.

(4) Same .a (3) in tem #2, except that there is an additionai

38

restriction that no message may be taken from the PRB If a

message addressing that word is on the MSB.

C' [(5) Same as (4) in System *2.

This too fails to realize fNOMEM" UOwever, both System *2 and System *3 do

realize fMUM if no WRITE packet is ever sent to the system when any READ/RTR tra',Isactic ns

ore in progress on that word. That is, before a WRITE.packet is sent, a RTR packet must have

been received for every READ packet sent addressing that word. Fortunate!y, it is not

difficult to guarantee that this requirement is met: it is simply a nondeterminate functional

specification for the "rest of the world", which we will call tte "user".

Definition: The user of a system is that to which the

system connects, and Is itself a system. The input ports o7

the user are the output ports of the given system, and vice-versa.

It would of course be totally useless to require that, in order for a realization

of f MWM to work, its user must realize a determinate fu,-tional specification. In fact, the

user of a system should have as few restrictions on its behavior as possible. Such

restrictions can generally be specified by requiring that the user realize some nondeterminate

function, Just as the system itself does. That Is, the difference between system specifications

and user specifications is nothing but a matter of degree of restrictiveness.

The requirement that NOMEM's user not send a WRITE command when any

READ/RTR transactions are in progress can be mnt by requiring it to realize the following

nondeterminate functional specification fDMEJER:

~NOEMUSER
fDWMUER

i!f Y - input hstory of USER and X - output histor/,

(note the exchange of input and output so that X and Y

reer to the same ptcket streams in both the system ard itN ,ser)

39

then X Is In fNMMSR~

(1) X consists only of packets READ(--) and WRITE(-,)

(2) For all addr, for any *'1RJTE(ocddr,--) in X, the number of

READ(addr)'s preceding it In X is the number

of RTR(addr,--)'s in Y

The function fNVMEMUSER is easily seen to be ND-monotonic. This is because the

restrictions on the user's output X never become more stringent as Y Increases. As Y

Increases, the proposition Uthe number of READ(addr)'s preceding It In X is the number of
RT#R(addr,--)'s in Y' never goes from true to false, so the set of leval err-Ys XA does not

j decreme. (If the %" had been repiaced by "-n", It would not be ND-monotonic.)

While system *3 does not by itself realize fNMWIt does realize fNMMif

connected to a user that realizes I'l~rTo prove this, the important step is to show that each

READ(oddr) packet generates a RTR pocket containing data defined by the most recent

WRPIF(sKdr,--) packet proceding the given READ(addr) packet in the input stream

Let to . the instant when the READ(addr) packet comes in, There may be

pending WARITE(addr,--) packets in the PWB at to. If there are none, the most recent

W'RITE(adidr,--) packet in the input streamn has already passed out of the PWB and into the

meamory unit, so its data Is In memory word addr. If there are WRITE(addr,--) packets in the

PWO at t0, the most recently inserted packet there is the most recent WRITE(addr,-- } packet

In the input stream. Therefore, lettirg

Ithe date In the youngest WPITE'addr,--) packet in the PW8 at timet

-if there Is such a packet

the contents of word aeddr in the memrory unit if not,

we must iihow that the data to be avontually returned in a RTR packet is D,e(t0). Let t,

the Instant wnen tho READ(addr) packet leaves the PRB. First, wje show that D,,M~) does not

change frorm t. t tl Since the PEAfXaddr) pkkst has entered the ;.yoiem, it ha&. leit the user.

4_inz:e the crrtponding RTP~adh1',--) pii.Ket has not yet be~en genteratea by the System (andi

0

won't be until after it has not been received by the user. Thoretore, there is a READ/RTR
transaction pending on addr.othuersntsndnay WlTad&,-- packets.

Therefore, whichever WRITE(addr,--) packet in the PWB Is youngest will stay yo~ungest as
long as It stays in the PWE. So as long as there are any WRITE(addr,--) packets In the PWB,

Ddoes not change. As long as there are no WRITE(gddr,--) packets in the PWB, Dsm - the
containts of memory, which doesn't change either, because only removal of a WRITE(addr,--)
packet from the PW8 can change the contents of memory word addr.

There can be no transitions fi-ro no WRITE(eddr,--) packets in the PWB to one

or more packets, because the us.-er is not senc'ing any. The remaining case to consider is the

dlizapararnca of tfe lait WRITE(addr,--) packeat from the PWB. This packet is clearly the

youngest, so D,,(Just prior to disappearance) -the data in the packet. This data is written

Into memory by rule 3 of the implementation. O,,r(just after disappearance) data written

into mem ory -data in the packet ihet disappeared. Therefore Dd(t 0) a - 0)

At time t,, when the READ(addr) packet leaves the PRB, there are no

WRITE(addr,--) pockets In the PWB, by rule 4 of the implementation. Therefore D.*(t 0)

W*0)- contents of memory word addr at t,~. But when the READ~addr) packet -s taken from

the PR8, the menwry word is read, and its date goes intio a RTR(addr,--) packet in the FRB.

hat packet Is therefore IRTIR(addrP,0~(0)), and Is the packet that will eventually be returned

to the user.

This example demonstrates a &eneral principle;

Whether or not a given implemnentationi of a syslem realizes a

given function may depend on whether the system's user

realizes Some Other specific function.

There is no way to get around this fact. There are systems that correctly

realize useful functions (even completely determinate functions) wher connetted to systems

that obey cortitin rules, t behave in a totally pathological vay otherwise. Furthermore, the

41

system often car,'t tell whether the user has broken the rules. In the case of system #3

above, the system would have been able to tell whether a WRITE(addr,--) packet came in

while a READ/RTR transaction was pending on word addr but in some cases the system has

no way of knowing whether its user is misbehaving.

The structure controller and packet memory system for a data flow computer is

such a system. Perhaps the most important example of the structure controller and memory's

dependence on the behavior of their user is the reference count and garbage collection

problem. The rules that the user (i.e. the data flow computer) must obey in order to assure

coFrcct rifarence accounting are as follows:

(1) No pointer to a structure may be duplicated without giving a

command to increase the reference count.

(2) No command to decrease the reference count may be given

unless a pointer is discarded.

These rules guaranteo !ht' the reference count for a node is at Isimst as great

as the number of pointers to the node contained anywhere in the computer. (Actuaiiy, the

rules will be such that the reference count is exactly equal to the number of pointers to the

i^*). However, the penalty for too high a reference count is simply that a useless structure

h@44 to be reclaimed and wastes memory space.)

Now suppose the computer (tht is, the structure controller's and memory's

user) violates the rule and allows the reference count to become too small. Eventually the

reference count may become zero while a pointer to the node still exists somewhere. When

The count goos to zero, the memory system reclaims the node and puts it on the list of free

nodes.

Two possibilities then arise. If an immediate attempt is made to use the

spurious ' pointer to the cell, in a SELECT instruction for example, the structure controller will

send i READ comrnsnd to the memory. The memory will know that this is an illegal command,

that s, that the us e has vic'ated its specificatiorn. It can then sigin.l an appropriate z-rror

condition in order to prevent the compu'lation from giving an incorrect result.

It, on the other hand, the cell is removed from the free storage list end used by

the structure control!r to build some new structure by the time the spurious pointer is used,

there is no way the memory can tell that a violation has oe-vurred. It has no choice but to

process the spurious commad in the normal way, which results in its referring to a structure

which is completely different from what was intended.

This is not to say that the data flow computer has no way to check for errors

In the handling of reference counte. Methods of doing so wlil be discussed in sectioin 5.0.6.

2.1.2 MUTUAL CONSISTENCY OF FUNCTIONAL REALIZATIONS

Suppose a system realizes fSVS contingent on its user realizing fUER which the

user does if the original system realizes fsys Does It follow that the realizations actually

occur when the two, systems are connocted to each other? Is it possible that they could both

violate their specifications, with each blaming the other? Let the systems be S and T. Each is

the other's user.

If any violation does occur, there must be a first instant of violation. That is,

there is an Instant to when it first becomes true that one systen', (say S) has an output history

which does not legally follow from its input history. There Is a delay, however slight (even if

it Is only the delay caused by propagation of electric currents through wires) in the behavior

of ,;. Therefore S's output history at to depends on T's outpuf, history slightly before to, at ai0

time when T was no: malfunctioning, so S cannot blame its ralfunction on T. Even if S and T

both malfunction at precisely the same instant, neither S nor T knows about the malfunction of

the ottier at that instant, ancl so neither malfunction can ba excused. It tollows that, if both

systems conditionally obey thair functional specifications, they will obey tl',ei- specifications in

practice.

43

2.1.3 KMNOTONICITY OF FUNCTIONAL SPECIFICATIONS OF TIlE USER

We now give an example of how not to define the functional specification of a

user. Suppose the system MEM has destructive readout, so that it requires that the user

rewrite any data that it reads. Suppose furtner that for some reason the same data must be

rewritten, and that it must be done immediately, that is, no other transactions may take place

at any address between the read and the rewrite. Here is an attempt at a functional

specification for USER. Since USER doesn't know what data to write until it receives the RTR

packet, we will require the rewrite to be a consequence of the RTR.

USER

Y - input to user, X - output from user

For all addr and I, if the ith RTR(addr) exi-lb in Y and is RTR(addrdata),

then the ith READ(addr) in X is immediitely followed in X by WRITE(addr,data)

Unfortunately, this does not require the user to wait for the RTR packet after

sending any READ, not sending any more packets until the RTR arrives. For example, the user

might send

(READ(); READ(2)

Until the RTR(Idata) packet comes back, the user has not broken any rules.

When the RTR(l,date) does come back, the user will have retroactively broken the rules rnd

be unabie to dlo anything about it. Since we would like to simplify as much as possible the

task of proving that systems obey functional specifications, we need to make the

specifications reflect the types of decisions that systems make in practice. It doesn't make

sense for a system to perform some operation or emit sohe result packet on the besis of an

tnput packet not having arrived and not being about to arrive, so fUSER I as given above, is

unreasonable.

I k

~ LThe problem Is that f Is not ND-monotonic. To eo this, refer to the
notation In the definition of NO-monotonicity and-let

~Z KP Q 0 MT(1,data) [~inpul histories]

X -(REAO(1; READ(2) .[output history]

Now Q P, X is In fut()and fUERQ is nonempty (containing, for example,

0 READ1); WRITE(1,data) ; READ(2)), but there is no history in fIJSCR(0) that is > X.

The correct specificetion for the user Is:

If Y - input to user-, X - output from user

I I ,For all addr and I, the ith READ(addr) in X, If it exists, Is(Immediately followed in 'A by WRITE(addr,data)
if there Is an ith RTR(addr,--) In Y and it Is RT(addrdats)

lost in X If there is no i~ RTR(addr,--) in Y

TNP Is easily soen to be NO-mcsnotonic.

45

2.2 PACKET ACKNOWLEDGMENTS AND SAFETY

All of the syslems considered so far have had to respond to incoming packets

however fast they were sent by their user, and there was no limit to the rate at which the

user could send tnem. In the first Implementation of MEM, the memory unit has to accept the

commands directly, and hence has to operate at unlimited speed. System *3, implementing

NI EM, seems a slight improvement In that It only has to put the commands into its buffers

infinitely quickly, until one realizes that unless the memory unit itself is infinitely fast the

buffers have to be Infinitely large.

This is clearly unacceptable; no interconnection of speed-independent modules

can make such assumptions. The problem is one of safe!! . No packet may be sent until it,

destination ;s ready to receive it. The safety problem arises at several levels in data flow

computers. Here we are concerned with it only at its most microscopic leve. The solution to

the problem is to acknowledge each packet transmission. That is, for each port transmitting

data, there is another port transmitting acknowledge packets in the opposite direction. Every

data packet musl ba acknjwledged before the next date packet can be sent on the same port.

We will require all ports of all systems to have such an acknowledge port.

(Even systems which would be safe without acknowledge ports will have them.

This is because of the manner in wnitch packets are transmitted. A packet transmission is

ind~cated by a zero to one transition of a "request' signal. An acknowledge signal from the

receiver Is needed to tell the transmitter to reset the request signal.)

The implementation of the system MEM may be modified to acknowledge input

commands only after tha transaction on the actual memory unit is completed. This will make it

impossible for the user to send a command while the memory is busy. Of course, the output

port must also have acknowledges, since the system to which the RTR packets are sent might

be slow and need to be protected agairst ovorrurs on its input. So the algorithm for AMEM

(MEM with ac. nowledges) miSht be:

(1) If a WRITE packet is roceived, update the memory (take your timel)

F,

46

and then send an acknowledge on the input acknowledge port.

(2) If a READ pocket is received, fetch data from the msmory and send

a RTR packet out.

(3) If an acknowledge is received on the output acknowledge port,

send an acknowledge on the input acknowledge port.

These three operations proceed concurrently and independently.

Transmission of acknowledge packets is behaviorally similar to trans'ission of

normal packets, and can be handled in the same way in the specification of a system. That is,

the acknowledge ports associated with output ports are treated exactly as though they were

input ports, vnd vice-versa. The system AMEM has two input ports: the "real" input port X

and the output acknowledge port YA and two outputs: the "real" output port Y and the input

acknowledge port XA.

fAMEM

Input ports - X, Y. output ports - Y, XA

(1) IY, number of READs in X

(2) Y1 RTR(addrdata) where the i1h 3EAD in X
r. Is REAOaddr) and the last WRITE(addr,--) before it, if there is

one, is WRITE(addr,data), or d.t& - 0 if there is no WRITE(addr,--)

before the 11h READ

(03) IXA "IYA- + number of WRITEs in X

(4) (XA)i "ac1 .

(5) 1Y'A .Y Y YAi + 1
(6) IXl - 1 < 1XAI < IX"

It is easy to provA that the given impleme, tation realizes parts (1), (2), (3), and

(4) of fAMEM * (it is very similar to MEk) Parts (4), (.,), a,,d (6) constitute thb *Standard

Acknewlede Restriction' that wa will require Al systems tnd All users to obey.

47

Standard Acknowledge Restriction (S.A.R.) - weak form

If X is anInput port and. NA a Its acknowledgi' port,

(1 XA, consists only of "ack'

(2) IXAI lI

If Y Is an output port and Y4 Is Its acknowledge port,

K(3)I1YI 1'YA1 +

'Given that a system and its user both obey the weak form of the S.AR., we can~

easily show that they obey the following:

Standard Acknowledge Restriction MSA.R) - strong form

If Z Is an Input or output port and Z4 Is itsi ack;nowledge port,
(1) ZA consists only of "ack*
(2)IJZAI IZI IZAI+l1

~ 4Proof: If Z is an input port of the system and an output port ot the user, (1) and JZA1 5 IZI
follow from the S.A.R. on the system (letting Z - X) and JZI IZAI + 1 follows from the S.A.R.

an the user (l'.tting Z -Y), It Z Is an output port of the system and an in~put port of the user,

Just exchange "system" and "user".

The S.A.R. Is clearly NODrnonotonle and hen~ce admissible as part of a functional

socicification.

In any proof that i system realizes a functioai, it suffices to show that it obeys

the weak lorm of the S.A.R corntlngeat on Its user obeying the strong form.

We can now provii that AMAEM realizes parts (5) tnd (6) of 'AMEM ,that is, the

S.AR In~ strong form.

48

Lot Y -output of AME.M and Input to user, X -input to AMEM and output of user.

First, number of WRITE& In X

- number of acks sent on XA in consequence, of (1) of AMEM's implementation

- XAI number of acks sent on XA in consequence of (3) of AMEM's implementation

M XAl - 1A

Now rYI - number of READS in X (by (2) of AME~s Implementation)

- IXJ - number of WVRITES inl X (by well-behavedness of user)

- IX! - JXJ+ 'NA' (derivedl above)

~ jXj +1- + ~'A1 (from S.AR for user)

Also -(A number of INRITEs in X + TA' (derived above)

:5 number of WRITEs in X +. rYI (from S.A.R. for user)

- number of WRITM in X + number of READS in X (by (2) of AMEM's implementstion)

- 1X,

This proves the weak form of the S.A.R., from which the strong form follows.

2.2.1 CANONICAL PACKET COMMUNiICATION

Since the Standard Acknowledge Restriction narrowly limits the way

acknowledge ports are handled in the functional specification of a system, It Is not uncommon

for the handling of the acknowledge ports to be similarly limited in the Implementation of the

system. Wherever possible, system Implementations will receive and transmit packets In the

following way:

49

Canonical Packet Reception (RCVPKIT)

(1) Wait until a packet has arrived on the input port (it might have already arrived by the

time this step is executed), tako its data

(2) Send an acknowledge for it

Canonical Packet Transmission (XMTPKT)

(1) Send the packet

(2) Wait ior an acknowledge

These operations will appear in the system implementation language as

"functions" that take port names as arguments and appear in assignment statements. The data

conveyed by the :- is the contents of the packet. Assignment statements contain;rig these

operations are like input/output operations in ordinary computer programs in that they 'hang

up" the program until the packet communication has taken place. "Var :- RCVPK(port" waits

until an incoming packet has arrived (and then acknowledges same). 'XMTPKT(port) :-

expression* waits until the transmitted packet h,-- been acknowledged. Programs may use

multiprocessing as long as no RCVPKT or XMTPI T operations can be simultaneously executed

by two processes on the same port.

It is easy to see that any implementation using the RCVPKT and XMTPKT

operations obeys the Standard Acknowledge Restriction.

Systems need not use these canonical operations in order to be correct. For

examplo, the implementation of AMEM given previously did not. That is why the proof that it

obeyed the Standard Acknowledgt- P.estriction w. so complicated,

Here is an implementation of CMEK, a system whose behavior is similar (but not

identical) to AMEM.

50

process starts at A

Inmut port X

aoutAu Port Y
ra memory jnit0

var command, aidf, data

A: command :- RCVPKT(X

if command - READ(--) then

let command - READ(addr)

data :- memory(addrh

XMTPKT(Y) :- RTR(addrdato)

else

let commandi w WRITE(addrdatah

nomory(addr) :- data;

goto A

51

22 LATENCY

CMEM and AMEM behave differently In a subl!e #ay. Suppose the user
transmits a READ packet and then refuses to acknowledge the RTR p.acket that results. AMEM

L refuses to acknowledge the original READ, and the entire system comnes to a hMRt since the
user can't send anothe P command packet until the previouz; one wa~s acknowledged. WNEM

acknowledges the REALS packet anyway (it happens automarvclly as part of the RCVPKT

operation). It then reiuses to acknowledge any further comm~and packets until the RTR is
acknowledged, because It gets hung up in the statement *XMTPKT(Y) :- rTR(addr,data).

CMEM behaeves as though it has an input buffer capable of storing one picket.

This difference shows up In the functional specification, Lines 2, 4, 5, and 6 of
the specification of f~e (section 2.2] apply to 0%E also. Lines I and 3 are different:

tAMEM

(1) rYl- number of RADs in X

(3) 1XA 1YiA1 + I. - number of READS In X

[number of READS in X If lXi - 0 or 1

(1)VI- <~or (lx X 2 and itY. 1 L> num~ber of READS in (X - last packet))

Lnumber of READS inl (X - last packet) otherwise

F NX if lXI - 0 ot l
(3) IXi' or (lJXi 2 and JYA' number of READS in (X - last packet))

L Xi - I othoewise

This illustratei ihe fact that correct analysis of the latency of a syste'm can be

quite comnplicated and requires careful analysis of the algorithm.

52

The only dif ference between AMEM and CMEM arises if the user fails to

K.aknowledge all RTR packets, that is, if IYAI JYni If 'YA1 -JY4 one can easily show that, for

both AMEM and CMEM,

ifi-nuirker of READs irn X

1XA IX

(To prove this for CM.:K show that If lXi 2, the case 1YA1 < number of READs

V in (X - lost packet) can't occur.)

The latency of' a systain Is the number of commands that It can accept and

acknowlisdge whose results have not beer' acknowledged by the user; that is, the number of

pending commands that It can fremembers. Because systems are so varied in their behavior,

the concept of latency Is not easy to define precisely.

One system for which it can be dfned Is the FIFO, or first-in-first-out buffer.

Or A FIFO of length N (and having latency N) Is a system with one Input port and one output

port, which realizes the Identity function and acknowledges up to N more inputs than its user

hat acknowledged outputs. The functior, realized by a FIFO of length N is:

ff

(1) IYI min {JXJ, 'YA1 + 1)

(2) V1 -x

(3) IX Al n. In {X lx + N

following program:

proceses start at A, B

!M port X
sutput V-rl

53

var m

var p Init 0 Iqueue populatioli

A: untilp sN Sp

k :- RCVPKT(X)

store P. at end of qu~us;

otoA;

TV B: until p h0 do

m :- Item taken from front of queuel

XMTPKT(Y) :m

p :- p - 11

poto B

For N I this becomes:

process starts at A

Input p~ort X

Mtut t port Y

var P

A: P :- RCVPKT(X)

XM4TPK(M) :-P

go A

A FIFO of latency zero cannot be implemented by any system using the RCVPK-T

and XMTPKT operations, though it can be implemented with a few p'leces of wire.

Appendix I contaln, a proof that a seriqs connection of FIFV,3 of lengths M and

N~ yields a FIFO of langth ~N

I54

When systems differ only in their latercy, it is sometimes possible to make them

equivalent by adding FIFO's to various ports. Fr~r example, it can be shown that CMEM is

Identical to AMEM with a FIFO of length one on its input. If it could b : shown that every

system X Is equivaient, extept for latency, to a system X0 defined as having latency zero, then

~' I the latency of the system X could be chivacterized by the lengths of the FIFO's that would
have to br. added to the various ports of Xoto make it idiiiticail to X. A sysiemi of latency zero

would have to be one which never acknowledges any input packet unt'l all resuilig output
packets have been sent and ackriowledged. AMEM is such a system, so GMEM could be said to
have latency I on its its input port and zaro on its output port. It is not clear whether suchi

an analysis can be applied to nondleterminate systems of significant complexity.

2.3.1 AP93ITRATORS, DISTRIBUTORS, AND ACATAORC

TIhree basic systems are very important in the Jesign of the structure

controller and memory, at. well as other olaces in data flow computers.

The arbitrator is a nondeoterminate system with N inputs arid one output, which

transmits each incoming packet to the output. The order of the packets from each input must

hb.4 preserved In the output stream. The order In the output stream ori packets from dlifferbrnt

ports is arbitrary. In any reasonable Implementation it would depend on which input pocket
arrived first. An arbitrator reaftzse the following function, In which port number is Indicated

by a superscript Instead of a subscripti

basic (zero 1a '.icy) arbitrator fAR

if X 1, X2,.. XN ire Inputs and Y Is output,

N
(1) IY! - min (j'X'I 'NA1 + 1)

W 2 V i e [,i,N nXJ-.umbsr of packets from X1 in first 1Y 1 pnckets of Y

(3) V I e (1,Nj if LI) mA I1, tho sequence <1, X' >, <i, > .. IX 0

is a sbeuo of Y.

55

Each Incoming packet is tagged with its port number so that its source can be

idntified in the output. This identification feature is used in a few, but not all, applications of

the arbitrator.

Arbilrators are the major component of the arbitration network of the data

flow computer. Tie principal us& of the arbitrator in the structure memory is to allow the

address space to be divided Into small pieces, with a separate memory module handling

transactions on each piece. The LOAD packets sent back from the several modules are

.ged In an arbitrator, so that the entire Interconnection of modules behaves as If It were

one memory system.

Arbitrators of nonzero latency may be defined as zero latency arbitrators with

various FIFO buffers on the ports. Suc arbitrators are useful in various places throughout

the data flow computer, but there is one piece where the arbitrator must have latency zero.

This Is in the transmission of packets from the structure controller to the memory. When the

structure controller receives an acknowledge for a packet it has sent to the memory, It must

know I t that packet is ahead of any other packets that might subsequently be sent to other

Input ports of the arbitrator on that memory unit. This problem will be explained in section

5.0.4.

An arbitrator of zerc latency may be realized by the following program:

process starts at A

input ports X, . .

otu port Y

var p, input

A: wait until a packet is available on any input port,

let p :- that rrt;

I this is nondt I minatel

input .- the packet on port p; d co not acknowl dge yet

XMTPKT(Y) :- <p , iiput>;

56

send ackncowledgi on port p;

Lto A

A distributor Is a determinate systemi with one input and N ouitputs, which

transmits incoming packets to the output port selected by a data field in the packet. Incoming

packets or@ assumed to be of the forfr <~port, data>. The clistrib-tor strips of f the "port' field

In the final result. An N-output distributor realizes the following function:

basic (zero latency) distributor DT

If X(Is- Input and yl, y2 , yN aeotus

(Y'F Y2.. yN, XA) CfDrTX YY . yN) if

(2) IXAI - X A

(3) V I V J, Y -date where jth packet <I,--> In X Is <1, dat3>

Such a distributor may be Implemented as follows:

process starts at A

ineut port X

output ports Y,..Y

A: wait until a packet Is available on port X;

z :- the packet on port X; I do not acknowledge yet

Vit - <port , daia>i,

XMTPKT(Yot) :- data;

send acknowledge on port XA;

goto A

Higher latency distributors may be dofined in terms of basic distributors and

FIFO buffers.

5-7

Distributors are the principal comporiant of ths~ distribution network of the data
flow computer.

An allocator is a nondeterminate variation of a distributor which !ransmits

incoming packets to one of severali output ports. Each packet is sent to any output port that

Is ready to receive it, that is, any port that has acknowledged all previous packeis sent to it.

An allocator is normally used to send packets to a group of identical units, always selecting

any unit which is not bu',y. The structure controller of a data flow computer will typically be

realized In the form of several Identical units in order to Increase throughput. Operatibn

packets from the Instruction cells will-be sent through allocators to the structure control uniti.

(in fact, the other functlonril units of a data flow computer will be handled the sam way.) AA

W+output allocator realizes, the following function:

basc (iniallatency) allocator fALLOC

If X is Inu n ,y' yN are outputs..

A)CfALocX A', A$... A~ i

(1) z Y - lXI
N

(2) IXA i-n { lX ,N - I + .1I

(3) yl, yl, yN are disjoint subsequencos of X

It may be implemeanted by the, Fnuingn rnffrs

processes start at A, B

input 122rt X

!utpt pMrt s y ... yN

queue q size N init (1, 2, .N)

var pop init N

58

z :-the packet on pori X; Ido not acknowledge yet

'R iem at aescl of q;

pop :- pop-I1;
send packeit z oni port Y ; Idon't wait for acknowledge

LiIntll pop #0 0 1J

send acknowledges on port XA;
f poto A;

8: waii until acknowledge Is available on any port Y'

est p :- that port;

Inondeterminstel
take the acknowledge from port YAP
put p at end of q;

pop :- pop.+ 1;

Boto B

The basic allocator given above does not have latency zero in the sense of not

acitnowledging any input until the resultant output has been acknowledged - such an

arrangement would defeat the ellocator's purpose. The system given above does have the

minimum latency that makes sense.

~59

3.0 THE BASIC MEMORY MODULE

In this section a formal specification of the memory module "MM" will be given.

MM is the fundamental building block of the packet memory system. Each MM system is a

nm.mory, somewhat like the system NOMEM described earlier, which handles a specific set of

addresses. To increase total information transfer rate, the address space of the entire packet
memory system may be divided into smaller pieces, with one MM unit handling each piece.

The M units are connected through arbitrators and distributors, and form a system which is

itself an MM. This is "horizontal" composition, and is quite similar to the interleaving found in

conventional memory systems. To increase the speod on individual transactions an MM unit

may have a cache module "CM" connected to it. W. vith CM connected to it is itself an MM.

This is "vertical' composition, and is quite similar to the cache memories found in high

performance conventional computers.

MM has one input port CMDI ('command in') taking command packets from its

user, ,nd one output port RESO ('result out") returning results to the user. The memory

space is divided into words or cells (the terms will be used Interchangably), each of which

correspond to one node of a structure. Every memory transaction refers to one word, and

every Incoming or outgoing packet bears the address of that word in its address field. T,"e

memory space is the same size as the address space, and the size is known to the user, so

there can be no "nonexistent memory word" error. In most implementations, the memory size

would be 2 N where th address field of every packet is N bits.

Notation: FET(*) means any of FET, FET', or FET +. LOAD(*) :Imilarly.

Each word in the memory contains a data field and a reference count field,

which are used by the structure controller as described in section 1.2. LOAD(*) and UPD

packets have corresponding fields. Furthermore, F-It+) packets have a tag field, which is

returned unchanged in the corresponding LOAD(*) packet.

60

, . 3.0.1 LATENCY AND INITIAL MEMORY CONTENTS

The specification of MM to be given below does not say anything about latency.

This is because MM's user is required to acknowledge every result packet. When this

happens, MM will acknowledge every command packet, regardless of what its actual latency is.

Hence, an accurate description of MM's latency is unnecessary.

Initial memory contents will also be left unspecified. In tho functional

specification of a memory, the definition of initial contents arises in the specification of the

system's response to a READ command that was not preceded by a WRITE. The specification

of MM will assume that this does not occur. In an actual data flow computer, a free storage

list will be generated when the system starts, which requires writing on every cell.

3.0.2 INFORMAL BEHAVIOR OF MM

There are 5 types of input packets to MIM and 4 types of output packets:

FET(addr, tag) ("fetch") reads the addressed word and returns

LOAD(addr, data, ref, tag)

[*ref" is the raference count]

FET+(addr, tag) increases the reference count by one and returns

LOAD+(aodr, data, ref, tag)

L"ref" is the reference count after the increment]

FET'(addr, tag) decreases the reference count by one and returns

LOAD'(addr, data, ref, tag)

CLR(addr) ("clear") waits until all FETIiLOAD, FET /LOAD +, and

FET-/LOAD" transactions on the indicated word have

completed, and then returns DONE(addr)

UPD(addr, data, ret) ("update*) writes ii,. data and reference count

into the addressed word. It returns no result,

and hence uses no tag.

MM is nondeterminate as was the example memory NOMEM, in that -esult

packets referring to different cells are not constrained to appear in the same order as the

commands that gave rise to them. MM Is further nondeterminate in that it may re~arrange

LOAD(*) packets referring to the same cell. Such nondeterminacy would not have made sense[for NOMEM since RTR packets with the same data and same addrbss were Indistinguishable,

but, In the case of MLOAD(*) packets may have different tags.

Since LOAD(*) packets involve a change of reference count and may be

reordered arbitrarily, the question srkies: What happens to the reference counts appearing in

such packets if they are reordered? The answer is that the result packets have referance

counts consistent with their own order, not the order of the original command packets.

Example: Suppose the ?eference count of cell A Is 1, and the command sequence

FET+(A, TI) Er +(A, T2) ;FET-A T3) ; ETI(A, T4)

Is sent. So." of the pssible results are

LOAD+(A, D, 2, Ti) ; LOAD4(A, D, 3, T2); LOAD-(A, D, 2, M3) LOAD_(A, D, I.T4)

or

LOAD_(A, D, 0, T3) ;LOAO-(A, D, -I1, T4)'j; ',.AD+(A, D, 0, TI) ;LOAD+(A, D, 1, T2)

ThM reference count temporarily becomes negative!

The ref eren~ce count appearing in any LOAD+ packef is one more than the count

In the preceding LOAD(*) pecket. Similarly, the count in a LOAD- is one fless than, and the

62

count in a LOAD is equal to, the count in the preceding LOAD(*). Some implementations of MM

will never reorder LOAD(*) packets referring to the same address, although they may reorder

those for different addresses. if this is the case, the reference count will never become

negative, which removes the need for a sign bit in the reference count field.

3.0.3 INFORMAL BEHAVIOR OF MM'S USER

When the user gives a CLR comnmand, it must not send any further commands of

any type for the indicated cell, until the corresponding DONE packet has returned. (The

purpose of the CLR command is to clear out pending transactions. It would defeat its purpose

to continue sending commands.)

Like NDMEM, MM requires that no UPD command be given while any

transactions are pending on the indicated cell.

3.0.4 FORMAL DEFINITION OF MM AND MMVUSER

These definitions do not show latency or make any reference to acknowledges.

The user is required to acknowledge every result packet and MM is consequently required to

acknowledge every command. Both systems of course obey the Standard Acknowledge

Restriction. The definitions do not consider the possibility of illegal packet types or invalid

fields in packets. All universal quantifle, . are intended to range over a set that is in each

case obviotL from context.

Note: In rules 2, 3, and 4 the zeroth DONE in Y means the beginning of Y. The

N+Ilt DONE in Y, where N - the number of DONEs in Y, means the end of Y. Similarly for CLRs

in X. The intention is to let the DONE and CLR packets break up X and Y into intervals, which

makes it convenient to think of the entire histories as being preceded and follc ied by DONE

or CLR packets.

Vk
63

MM

If X is Input and Y is output, Y e fmM(X) if

(1) For all addr, the number of OONE(addr) packets in Y the number of CLR(addr)

packets in X

(2) For all addr, K, and tag, the number of LOAD(ddr,--,--,tag) packets between the Kth

avid KIlt DONE(addr) in Y the number of FET(addr,tag) packets between the Kth

and KO"a CLR(addr) In X

(3) For ati add~r, K, and tag, the number of LOAD(addr,--,--,tag) packsts between the

0t aind K11' DONE(addr) In V w the numbee of FETr(addr,tog) packets between the

Kth and K+1,' CLR(addr) in X

(4) For all addr, K, and tag, the number of LOAD(ddr,--,--,tag) packets between the

0t and KOI'" DONE(addr in Y - the number of FET+(addr,tag) packets between the

0t and K+1~t CLR(addr) in X

(5) For all addr, J, and K, the Pt LOA(*)(addr,--,-, -- in Y is

LOAD(*)(*cddr,data,ref+D,--), where the last UP(addr,--,--) before the J'h

FET(*)(addr,--) in X is UPD(addr,data, ref) and is preceded by I FET(*)(Sddr,--)

packets, and D - (number of LOAP+(eddr,--,--,--) packets) - (number of LOAD-

(adr,-,----)packets) among the I+1* to Pt LOAD t)(addr,--,--,--) pockets in Y.

64

* ~MM1JSER

rIf Y Is input to user and X is output,) X E I MSY if

(1) For all addr, either the number of CLR(sddr) packets in X -the number of

t OONE(addr) packests int Y, or else there is one more CLR(addr) in X than DONE(addr)
In Y, and thers are no FET(*)(addr,--) or UPD9ddr,--,--) packets after the last

CLR(addr) In X

(2) For all addr, for any UPD(addr,--,--) in X, the number of FET(*)(addr,--) packets

preceading Ri is < ihe number of LOArj t*)(,ddr,--,--,--) packets in Y.

3.0.5 IMPLEMENTATION OF MA USING A RANDOM ACCESS DEVICE

Implementation of' WM with a random access device Is quite easy. Assume the

memory is two arrays, mern-data and mem-ref, containing the data and reference count for

caech word, respectively. The following program will suffice:

process starts at A

input port CMDI

output port rzso

ara mem-dlata, mem-ref

var command, &ddr, date, ref, tag

A: command :- RCVPKT(CMD~h

if command - FET(--,--) then FET - return LOAD

lot command - FET(addr, tagh

X<MTPKT(RESO) :- LOAt~addr, mom-data(:ddr), mem-ref(addr), tag)

also if command - FEr(--,--) then I FET_ - decrement rof and return LOWD

let command - FET_(ddr, tag%

65

mom-ref (addr) :-mom-ref (addr) - 1;

XMTPKT(RESO) :LOAY(addr, mem-data(addr), mem-ref(addr), tag)

a lse if command - FET+(--,--) then I FET - increment ref and return LOAD+

let command - FET(*)(addr, tag);

mom-ref (.ddr) :-mem-ref(addr) + 1;

XMTPKT(RESO) :-LOAD(addr, mem-dats(addr), mom-ref (addr), tag)

else If command - U)PD(--,--,--) then IUPO - update memory

command - UPO(addr, data, ref);

mem-data(addr) :- dataiI ___mom-ref (addr) -- ref
elseo CIR - return DONE

let command - CLR(addr);

XMATPKT(RESO) :-DONE(addr);

F poto A

66

3.1 HORIZONTAL INTERCONNECTIONS OF "MM" SYSTEMS

The functional specifications of MM and its user have the useful properties that:

(1) fMM and fMMU9ER are invariant under reordering of command packets

referring to different words. That is, such a reordering will not affect the

legal responses from MM, nor will it affect the legality of the commands

from the user.

(2) fmm and f. are similarly inv.rtant rtnder reordering of result packets

referring to different words.

(3) fmm and f aUSER are invariant under reordering of LOAD(*) packets for th.

same word between any pair of DONE packets for that word, assuming the

reference counts are suitably adjusted.

(4) the behavioral properties of MM and itr user are completely independent

for different words.

Property (4) makes it possible to correct MM systems and their users through

distributors and arbttrators, and still have an M system. The following connections are

possible:

67

Multiple memory connection

CMDI RESO

MM

D AI~M 1.. M

If each of the small boxes realizes fMM (contingent on its user realizing

vfMMtS R), the large dashed box realizes fMMJSER for a larger address space. If the user of the

large dashed box realize, fMMUSER each small box'es user realizes f

For this to work the distributor and arbitrator must handle address fields

properly. If there are 2N small MM units, the address field of the interconnection is N bits

longer than that of the units. The distributor picks out N bits of all incoming address fields

end uses them as the output port numbers. (For interleaving purposes, it might be most

effective to pick out the least significant bits.) Those bits do not appear in the address fields

of the packets that are sent to the MM units. The arbitrator inserts the input port number of

each incoming packet into the address field in the same positions as the bits that were

removed by the distributor.

This connection is one of the methods by which the transaction rate can be

increased. Random access memory devices have the property that every read or write

transaction ceuse! vo device to become busy for some period of time, during which it cannot

handle any other (ransactions. For example, a MOS RAM might be busy for 500 nanoseconas

during every transaction, and therefore be able to handle 2 million transactions per s,.vond.
Pltttinao FIFO' hiiffor ;f ; 1 -ztl ',6,,,~ -l I.,; ... :y' iL ,

its transaction rate stays the same. The only way to increase the data rate is to use many

memory, units. If a distributor can handle 64 million packets per secona on its inpit port, and

an arbitrator can t'andte 64 million packets per second on its output port, it migh. b'l

reasonable to use 32 MOS RAM's, each ni o separate MM unit. These are connected to - 32

68

I ~port distributor and a 32 port arbitrato. The average rate at which packets come out of

each part of the distributor is 2 million per second, which is the rate at which individual units

can handle them. Assuming the commands are uniformly distributed over the address space,

this interconnection will handie 64 million transactions per second. The retrieval delay for

each item will still be 500 nanoseconds, but that is an unavoidable consequence of the

memory technology used.

For this interconnection to work effectively, the latency of the individual MM

units, or the output latency of the distributor, must be at least one, and preferably more. If

the MM units and the distributor all have latency zero, the distributor will be unable to

acknowledge a command, and hence unable to get the next one, until the command has been

completely processed by the MM unit. This would defeat the purpose of using multiple units.

In practice, the latency might be somewhat more thin one, In order to mintain a transaction

rate near the maximum in the presence of nonuniform statistical frequency of commands for

each init. This can be accomplished by placing a small FIFO buffer between the distributor

and each SM unit.

69

Multiple user connection

This is just like the multiplo memory -connecticn, but with the roles of MM &nd the user

excha ed. if the solid box realizes fMM , each of the interfaces at the top of the diagram

realizes f for a smaller address space. If each of the users of this interconnection realizes

fMMjR , then the collection of all of them along with the arbitrator and distributor realizes

fMMI SER on the large address space.

As in the previous case, the arbitrator must map the input port number into a

larger address field, and and distributor must remove the correspo.-ding part of the address

field and use it us the output port number. Each of the interfaces at the top of the diagram

realizes an equivalent address space, and each uses a different subse' of the memory space

contained -n the actual MM unit.

This connection would be used if there were several users, each presenting
commands at such a slow rate that one memory module could handle all of them. Such a
situation could arise if several cache modules are used which have a sufficiently high hitw

rate that the rate of memory requests arising from cache misses is low.

70

3.2 VERTICAL COMPOSITION AND THE CACHE MODULE

In the section we describe the cache module "CM which connects to an MM

system and, so connected, realizes an MM system with the same address space.

CMDI RESO

CM

MEMO MEII

CMDO1 Y, RESO

LMM

if the small box labelled MM realizes fMM the large dashed box realizes fmm.

If the user of the large dashed box realizes flAMUSER , the user of the small box realizes

fMMLISER'

Vertical and horizontal Interconnections may be mixed as in the following

examples, sin~ce In each case the system being Implemented Is MM.

F!

71

CM

The purpose of a cache Is to retain the data of a small subset of the main

memory's address space, and return requests for data in that subset directly without reading

it from main memory. Since the cache has much less data than the main memory, it can be

built out of faster circuits and devices without being prohibitively expensive. Hence a,.,.

request for a datum that Is in the cache (a "cache hit") is answered very quickly. If the cache

is sufficiently well designed that it has a high hit rate, the overall performance of the memory
will tw nearly as good as that o, the csche itself.

A cache must be designed to maximize the hit rate by holding those memory

items that are likely to be addressed. This is usually don- by assuming that the addresses

being used vary slowly with time, and so, when an item is referred to once, it is likely to be

referred to ain soon, and should be placed inh the a che from man item is

addressed which is not in the cache (a .ctche miss), the datum is fetched from main memory,

placed In the cache, and also returned to the user. Subsequent requests for that datum will

be cache hits.

The size of the "items" that the cache contains affect its performance. A cache

for the main memory of a conventional computer may use rather large items consisting of, for

ax iiple, 8 consecutive words. This is effective because references to memory, especially

,struction fetches, tend to be localized in space. When a cache miss occurs on any woro, a

block of 8 consecutive words Is revd from main memory and -oaded into tho cache. Since

references in the immediate future are likely to be in this block, the hit rate is eased.

72

The strurture memory for a data flow computer has no such locality of

reference, Therefore, the unit of cache organization will be the individual word,

Placing an item in the cache usually requires removing some other item. The

most popular strategy, and the ono that will be used here, is the "least recently used" (LRU)

strategy. Each reference to a cache item is noted in some sort of reference table. When

space must be made in the cache for a new datum, the item that hds been used least recently,

that is, has gone the longest time without a reference, is chosen.

When a write command is issued, the item in the cache is updated

appropriately. In some cache organization;, the item in main memory is always updated also.

This technique, known as "write through", will not be used here. Instead, the item in the

cache will simply b, marked as having been modified. When an item that has been modified

must be displaced Irom the cache, it is first written into main memory. This method has a

lower volume of commands going from the cache to main memory than, the "write through"

method.

It is crucial that the cache be able to determine very quickly whether or not it

contains a given word. Since its memory space is much smaller than the full address space, it

must store the full address with each item. When a command is received, the cache must be

-.earched for an item with the given address. It is important that the search be conducted

quickly.

A popular method of organizing the cache for rapid searching is the "sei

associative" memory (12] . The cache is organized ar an array of columns and rows. The full

address space is similarly organized, with the same number of columns, and a presumably

much greater number of rows. Each item in the cache is contr,4ined to corresoond to the

same coiumn in the full address space as its own column in :he cache. Therefore, to search

for a given itern whose full address is known, tho address is separated into row and column.

If it is in the cache, it must be in the same columii asi ts column uddress in the real memory,

so ,, that colurmn of the ctwhe nosd to be seorchad. Furthermore, only row .3ddress.s need

73

to be stored in the cache along with the items. The column addresses are implicit from the

position in the cache.

This organization works well for a suprisingly small number of rows in the

cache. For example, the main memory cache on the IBM 370/168 computer has only four

rows. (The number of rows is referred to as "cache depth,) To determine whether a given

item is In the cache, only four address comparisons need to be made. These can easily be

done simultaneously.

The column number of a word In the full :ddrees spzcg is typicclly ta on frtm

the low bits of its address. The row number comes from the remaining bits. This allows

consecutively addressed items to reside in the cache in adjacent columns of one row.

Example: Suppose the full address space contains 4096 addresses, and

addresses consist of four octal digits. There are 8 columns, and the low digit of the address

is the column number. The cache depth is three.

column number

0 1 2 3 4 5 6 7

row address 551 550 543 504 444 425 425 425

data A B C D E F G H

row address 412 417 447 313 314 315 270 241

data I J K L M N C) P

row sddress 242 242 242 242 246 271 365 413

data Q R S T U V W X

The cache holds the item wit!; address 4472, with uta BK". When a command is

ror.eved t-squesting th contents of loration 4472, the address is divided into the row (447)

P , 74

and the column (2). Column 2 of the cache is then searched for 447. It contains 543, 447,

and 242. 447 Is compared with these three numbers simultaneously. It matches the second of

them, so the data associated with it (K) is returned to the user.

When a new Item is to be put into the cache, its column number is known in

advance, so only its row must be determined by searching the column for the !east recently

used item. For example, if an entry for 2124 must be created, column 4 is searched. If the

least recently used item is 314, it is removed. If its *modify" bit is on, an LPD packet is sent

to main memory, containing the address (3144) and the data (M). The row address is then

changed to 212.

The determination of which item In a column was least recently used can be

made by some simple scheme such as keeping a counter along with the data for each item.

Whenever any reference is made, that item's counter is set to zero and all others in its column

are Increased by one. The least recently used item is the one with the highest count.

Because each operation in the cache involves examination of an entire column,

the cache memory itself should be organized so that each column is a "word*, that is, the

antire column is read or written at once.

3.2.1 DESIGN OF CM

The functional specification of CM is very simple: it must realize fMM through

its "top" ports and realize fMMUSER through its "bottom" ports.

75

fCM

If (CMDI, MEMI) - Input ports, and (RESO, MEMO) - output ports,

(RESO, MEMO) e fcM(CMOI, MEM) if

(1) RESO E fMM(CMDI)

(2) MEMO e fhNUSER(MMI)

An implementation of a system realizing fc will now be given. Each word of

the full address space Is in one of eight states denoted N, P, P', Q, Q', R, R', :nd T.

N - The word is not In the cache at all. (Since the cache is much smaller than

the full address space, most words are In this state at any instant.) There

are no pending commands from the user to the system. There are no

pending commands from the cache to the main memory.

P - Space has been reserved in the cache for the word, and at least one FET(+)

has been sent to main memory, but no LOAD(*) has come back. One or more

FET(*)/LOAD(*) transactions are pending to the cache. Exactly the same

transactions are pending to the main memory.

P - Same as P, Wut a CLR packet has been received from the user. One or

more FET(:)/LOAO(':) transactions, plus a CLR, are pending to the cache.

The same transactions without the CLR are pending to the main memory.

Q - The first LOAD(:) has come back from main memory. A CLR packet will be
sent as soon as main memory is .hi fn ir-,ant it 7, ,. nr mtr-

FET(*)/LOAD(*) transactions are pending to the cache. Exactly the same

transactions are pending to the main rmemnry.

76

- Same as Q, but a CLR packet has been received from the user. Zero or

more FET(*)/LOAD(1:) transactions, plus a CLR, are pending to the cache.

The same transactions without the CLR are pending to the main memory.

R - The word is in the cache, but some FET(*)/LOAD(*) transactions may still be

In progress in main memory. A CLR packet has been sent to remove them.

No CLR packet has been received from the user. Zero or more

FET(*)/LOAD(*) transactions are pending to the cache. The same

transactions, plus a CLR, are pending to the main memory.

R' - Same as R, but a CR packet has been received from the user. Zero or

more FET(*)/LOAD(*) transactions, plus a CLR, are par.ding to the cache.

Exactly the same transactions are pending to the main memory.

T - The word is truly in the cache. There are no pending transactions to the

cache or from the cache to the main memory.

The aormal states for a word are N or T, depending on whether the word is in

the cache or not. In state T, all commands are acted upon immediately by the cache without

any communication with main memory. In state N, any commend from the user causes the

word to undergo transitions that eventually result in Its bein& in state T. If the command is a

FET(*), the word must be read from main memory, and the sti'e goes through some of the

Intermediate states. If the command is UPD, the word Is created !n the cache in state T. In

either case, some other word may have to be displaced, going from statke T to state N, If the
*modify" flag for that word is on, an UPD packet is sent to main memory.

The specifications of MM and its user require that the user accept all result

f-,-:-M'A M ; -1- -- v - -r.- --- A -- --

commands have been accepted by the uer 'Althugh ar eft,(erit ;mpl ,entation of MM might

allow many commands to be in progress at one Tere.) r. , wn order to avoii a deadlock, CK'

must accept packets from main memory, at kFMI, .von . ma.. ina merury refuses to accept

any further commands through MEMO. CM aomel'es ,r 4 1' ftc r memory to accept a

77

command. While it is waiting, It. may refuse to accept further commands at CMDI, but it must

always be willing to accept packets at MEMI. CM may a,,sume that any packet sent through

RESO will be accepted.

Thq reason why CM allocates a cache cell for an item and puts it into state P as

soon as the first FET(* command comes from the urser, is to avoid a deadlock, that is,iuan frmwihtesseaantpoed f tsml ettepce u hog

MEOand did not allocate the cache cell until the first LOAD() packet came back, it would

ueisown space more efflcienty, but would be in danger of deadlock. (P cells are useless,

snethoy do nkA contain data.) This will be explmwned In section 6.0.

In the following descrlption of the cache algorithm, the manipu~lation of the

counters to de.terminc the east recently uied item itrinot shown.I '3TATE N

FFT(*)(acdr, tare) a'i CMDI - raate sr-ce in the mppropria cadche colurf

Either i;e an empty space (this situation can only arise wh en the syr'tm is

fir-' started) or remove the 1,'kst recent"- used item in state T. If no item

is in state T, wait until one enters state T, not accepting Ay packets on

CMODI A hile waitir., (items in other states wili progress to state Tsi WhenI the item to be removed iv foundi, wirite it out if its 'modify" lig is on, by
sending an UPrO packet at MEMO. If main mem')ry is no. accepting r &ckets
at MvEW, wit until it does. Than create a new item ir the cache -'th the

given address, "modify" - 0, stati P. Lsave !he d~ate and refetuncu count

fields unspecified. Also, send a FET tt) packet, Identical to the Incominig o'.a,
out through MEMO, to fetch the dlata.

CLR(adcfr) at CMOI send OONE(addr) at RESO.

UPD~addr, data, ref) at OMDI - Cre~ate space in the cache as far FET(l), perhaps

tendirig ?n tPO Packeat to maiorvn Then create t - ~y ite tc c4

with the given address, *modify" - 1, data and reference count from the

command, and state - T.

LOAD(*) or DONE at MEMI - can't occur because no transactions are pending in

main memory.

STATE P

FET(*)(addr, tag) at CMDI - Send the same packet at MEMO.

CLR(addr) at CMOI - Change to state P'.

UPD(addr, data, ref) at CMOI - can't happen, since transactions are pending in

the cache.

LOAD(*)(addr, data, ref, tag) at MEMI - Deposit the data and reference count

into the cache word, and send the same packet out at RESO. If the main

memory is accepting commands, send a CLR(addr) at MEMO and change this

cache item to state I. If not, chtange to state Q.

DONE at MEMI - can't happen, since no CLR has been given to main nemory.

STATE P'

FET (1), UPD, or CLR at CMDI - can't happen, since user has a CLR/DONE

transaction pending.

LOAD(+)(addr, data. ref. taa) at MEMI - Deoosit the data and reference count

into the cache word, and send the same packet out at RESO. If the main

memory is aepting commands, send a CLR(addr) at MEMO and change this

cache item to state R'. It not, change to state Q'.

79

DONE at MEMI - can't happen, since no CLR has bain given to main memory.

STATE Q

Note: CM does not accept any command at CMOI whenever any item is in state

a. Q is simply a temporary state that is waiting to send a CLR(addr) out through

MEMO and go into state P.

FET(*), UPD, or CLR at CMD1 - can't happen, since cache Is not accepting

commands.

LQAOI*) at MEMI - same as state R.

DONE at MEMI - can't hoppen, since CLR has not been sent to main memory.

Main memory becomes able to accept a command - Send CLR(addr) through

MEMO, change to state P.

STATE Q'

Note: CM does not accept any command at CMD,' whenever any Item ic in state

Q'. Q' is simply a temporary state that Is waiting to send a CLR(addr) out

through MEMO and go into state R'.

FE(0 UPD, or CLR at CMDI - can't happen, since cache is not accepting

commands.

LOAD{*) at MEMI - same as state R

DONE at MEMI - can't happen, since CLR has not been sent to main memory.

Main iie~rviy becomes able lo accept a command - Send CLR(add') through

MEfMO, change to state Ir.

STATE R

FETW~(addr, tag) at CIA3I - Update the reference count in the cache, and set

the "modify" bit If the. packet was FET- or FET'. Send LOAD(*)(addr, data,

newref, tag) through RESO, where data and newref are current contents of
k ~the cinch.. Note: at the lnstant this happens, there may still be

FET{*)/LOAD(*) transactions pending In main memory. If so, those FET(*)

packets wore earlier then this one, but the corresponding LOAD(*) packets

won't be returned until later. This is the circumstance which causes the

general system MM to occasionally return LOAD(*) packets in an order

different from thet (if the FET* packets.

UPD(oddv, data, ref) at CMI - Updtte the cache, set the *modify* bit. Note: if

an UPD packet Is received while In state R, we know from the rules for

MISER that no FET*)/LOAD* transactions are pending in main memory.

CLR(addr) at CAAI - Change to state R'.

LOA(*)(sd&lr, data, ref, tag) at NEMI - Ignore the *ref field In the packet.

Incremfent or decrement the reference couf.t 'in the cache If the packet It
LOAD- or LOAD'. Do not set the "moify" fIing, since main memory already

knows about the reference count change. Send LOAD(*)(addr, data, newref,

ta~g) through RESO, where newref w the updated reference count In M~e

cvche.

UONEvddr) at MEMI - Change to state T.

81

STATE FR'

FETI*)l UPI), or CIR at CMOI - con't happen, since user has a CLR/DONE

transaction pending.

* ~ LOAD(*) at MEMI - some As state R.

DONE(addr) at MEMI - send DONE(addr) through RESO, change to state T.

STATE T

[~jFETW*(addr, to)at CMD - Updatm the reference count in the cache, and set
the "modify" bit If the packet was FET- or FET4. Send LOADW5 (addr, data,

newrf, og)thrughRESQ whre otsandnewref are current contents of

cache.

I. UPO(addr, data, ref) at CMD1 - Update the cache, set the *modify" bit.

Ct.R(addr) at CMDI - Send DONE',addr) through RESO.

LOAD(* or DONE at MEMI - can't happen, since there are no pending

transactions in main memory.

V 3.2.2 PROOF OF CORRECTNESS OF CM

A proof of CM's correctness is generally fimilar to that of the system MEM

given In section 2.0.3. The memory state required in the specification is the contents of the

-- P- tvu .iieiwy. vne mnust snow inar, tor a cell in states Q, Q', R, R', or T,

the data in the cptvhe itself is the some as that in the last UPD packet at CMDI, and, if theI modify bit is off, this data is in mnain memory also. For states NM P, and P', the correct data is

In main memory, thet is, the last UPD at CVA0I has the sa2me data as the last U)PO at MEMO.
Theta properties must be shown ID b* preserved for all state transitions, and ft avstL

shown that all legal FET* commads will got the correct data. Furthermore, the effect of

reference count modifications resulting from FET* and FET" commands must be taken Into

occount.

83

4.0 IMPLEMENTATION OF MM USING A "ROTATING" DEVICE

"Rotating" memories such as charge coupled device (CCD) or "magnetic bubble"

shift registers, or magnetic disks, are rightly considered to be essentially unusable for the

main memory of a computer because of their excessive retrieval delay. In a data flow

computer, total transaction rate is as important a criterion as retrieval delay, and so the

disadvantages of these devices largely disappears, mahing them perhaps economical as a mass

store. On the other hand, further improvements in RAM technology may render these shift

registers obsolete for most applications. This section is predicated on the assumption that

CCD's or bubble memories will be economical and useful in the packet memory system.

In a rotating memory, the data Is structured i a ring which *rotates" past a

"reedlwrite head". Equivalently, one may think of it as a fixed ring and a pointer rotating

around the ring, with momory tr ansacilons permitted only on the cell currently pointed to. If

the addresses of words correspond to fixed places on the ring, it is possible to predict when

any given cell will be pointed to. Commands from the user can be stored in a memory

somewhat like a queue, sorted by position, so that the pending transaction 3t the head of the

queue is always (or nezrly always) the one that the pointer will reach next. This will makp

optimal use of the availtbility of data from the CCO.

There are a number of CCD architectures currently in use. In the "line

addressed random access memory" (LARAM), only a small part of the device shifts at full

speed at any one time. The rest shifts and recirculates at a much lower speed in order to

conserve power. The intent is to make the device behave somewhat like a random acc3ss

memory. To retrieve any one item, one finds the section in which that item is stored, and

directs the CZCD to shift that section at high speed until the desired item is found. Whige this

is happening, the other sections are shifting mUch more slowly, so this architecture is not

e~icient when many items are being sought at one time. it is ineretore not suiaoe tor ie

type of packet memory system being considered here.

Two other ,ypes of CCO's are the "serpentine", which is simply a long shift

register (it "snakes' b.Rck and forth on the IC chip), and the "serial-parallel-serial", which is

84

simply a collection of interloetrd shift registers. These two types differ only in engineering

specifications such as data rij itd power consumption. They both behave like long shift

registers, and hence are suitable f,- the type of memory under discussion.

There are a number of implementation considerations that must be taken into

account in designing a rotating packet rnemory. For example, a number of shift registers, one

for each bit of a data word, may be used, so that a new date word comes into position on

each clock pulse. On the other hand, a single shift register might be used, with each word

stored serially, or any arrangement betwen these two extremes can be used. One might also

use an unusual correspondence between .Hress and shift register posion. All of these

considerations are irrelevant to the structure being considered, so we will assume the memory

is a ring of full words, ordered by address, with address zero following the highest address,

and the pointer scanning the ring in order of Increasing address. Any other implementation is

equivalent to this.

In the following, the memory w~m be referred to as the "CCC", regardless of

what type of device it actually is.

Pending transactions (that Is, packets received at CMDI) sire storea in the

transaction list (TL), which is presumably much smaller than the memory itse;f. The TL is

presumably realized with a random access memory devices. In order to avoid moving data in

the TL unnecessarily, It has a ring structure lust liKe the memory. Transijctions are placed in

the TL at or near the same angular position as the position in mnmory 1)f the word to ",hich

they refer. Since the TL is a smaller ring than the memory, each ad& ess of TL corresponds

to many consecutive addresses of memory.

Let (3X be- the function mapping addresses in tie entire address spece into

the correeponding address in the TL This is celled the hash fu iction for reasons that will be

expiwneo inter. ,A, is just mhe integer part o1 me quotier Of A otvioeo oy the ratio 'Ti

memory size to TL size. In a realization in which all sizes aro powers of two, X) is just the

appropriats number of high order bits o X.

85

When a command Is received for address X, the command packet Is placed in

thf TL at address.(X), or the first free address thereafter if (X) is full. Assuming a

uniform distribution of addresser appearing in commands, the TL should be uniformly filled.

As the memory pointer rotates through the memory, another pointer, maintaining about the

same angular position, rotates through the TL, picking out the next transaction to perform.

The TL is organized much like the "ordered hash table" devised by Amble and

Knuth [2] , with modifications to allow for its circularity and for the fact that items are being

removed fron it. In an ordered hash table, each item has. a hash address. It is placed in the

table at its hash address or in the contiguous block of items after the hash address. This

F block is in increasing order of data value. This ordering makes it possible to determine

whether an item is in the table much more quickly than in a conventional hash table.

Although ordered hash tobles are intended for entirely different applications

than the transaction !ist of a packet me#o'y,'the concept is well suited to this application.

The "value" of an item in the table Is tt0 word address appetng in the p..ket. Lot A(P)

denote this address for packet P, and call it the'"CCD address". The "hash address"

corresponding to D address X is just (X, defined earlier. (Hash functions are usually

designed to be random, but that property is not desirable here.) The hash address of packet

P is therefore (a(P)).

Because the'TL is a ring instead of a linear list, a different definition of order is

needed. The concepts of "greater than" and "less than" are replaced by "clockwise from" and

"counterclockwise from". Since any item is both clockwise and counterclockwise from any

other item, the order of two items must be defined relative to a third. This is done through

the use of intervals denoted in ordinary mathematical notation. [X, Y' is the interval from X

clockwise to Y. If X Y, it has its customary meaning. If X > Y, [X, Y] is the set of numbers

tfrom X up to the highP , ddraet !

intervals have their customary meaning, that is, [X, Y) means [X, Y] exclusive of Y, etc. [X, Y)

and (Y, X) are clearly complements of each other if X ; Y.

The ordering of hash addresses and word addrosses is expressed in terms of

86

whether or not an element, is in an. interval. Z e [X, Y) nn that if one starts at X and
mroves clockwise, one reaches, Z'before Y.

The general, ru~e for maintoinlng order in TL. is that, if one goes clockwise from

an item's hash address to the Item Itself, one will not pass any empty cells and will pass only

"smaller"m items, that Is, Items whose hash &ddresses ors, counterclockwise from this one. This

it best illustrated with a dlagrem. Let- CC ackdresses be two octal digits and hash addresses

be one digit. The hash function picks out the first digit. The transaction list has 8 cells, and is

drawn as a circle.

k7

Cells~ ~ 00n r mt.Cl ollsa 'c~ ihades1,woehs

saeCades. Spcially thae fotyll2 coniains ar cposibl de: s1,woehs

Ono or m~ore FET*) packets. When the tCD pointor reachEs the appropriate

address, Its data will be read and sent bac'n, to the user in a sequence of

LOAD(t) packets.

One or more FET(*) p~ackets, followed by a CUR. When tK- CCI) pointer reacoes

the appropriato address, the LOAD(") packets will be sent out, followed by

87

a DONE packet.

A single UPO packet. The data will be written into the (CD when the

appropriate address Is reached.

No other states are possible. This is because it is a violation of MMSER to send

an UPD packet when there are FET(*) or CLR packets pending. If an UPD is given when &n

LPD is already pending, the new one simply replaces the old one. If a FET (*) is given when

an UPD is pending, the data Is taken directly from the pending UPD packet and returned in a

LOAD(*) packet.

Ii Intuitively, the rule for a well formed transaction list is that the 'e1nos

progressing clockwise from a cell to thoso items with that cell's hash address must never

cross each other or pass over an empty cell. If an item with CCD address 43 were placed
Into call 6, this rue would be violated, since the line from 4 to 43 would cross the line from 5

to 55. The Insertion algorithm must instead put the 43 into cell 5 and move the 55 to cell 6.

Furthermore, all items with the same hash address must be ordered by CCD address. In the

example, 16 Is clockwise from 11.

To insert an item, start at its hash address and search clockwise until an empty

cell or a cell containing an item with higher (more clockwise) CCD address is found. In the

former case, Inser't the new item. In the latter case, Insert the new item after making space

for it by pushing the old item, and all those contiguously following it, one space clockwise. In

the example, insertion of item 10 would require pushing 11, 16, 25, 32, and 55 clockwise.

Insertion of 42 would require pushing only the 55.

While incoming command packets are being placed in the TL by the above
procedure, packets are being renioved and sent '.) the CCD memory. This is accomplished

through the use of a transaction list pointer (TLP) which rotates clockwise roughly in

synthronization with the CCD address pointer. When the the CCD pointer points to CCD cell

10, the TLP points to TL address 1. Since a packet for address I I is found there, it waits until

the CCD pointer - 11, removes the packet from the TL, and performs the indicated operation

88

on the contents of CCO address 11. The TP is then immediately advanced to the next

position, 2. Since the packet there specifies address 16, it waits until the CCD pointer - 16

en then removes the packet and perform the memory operation. The TLP the moves to 3

end the process continues.

The removal of items from TL makes It necessary to modify the rules for a
well-formed transaction list. If 16 is removed from the example list, the line from cell 2 to
Item 25 passes through an empty cell, which would violate the condition given previously.

A Therefore, the region from which packets are removed is declared to be the "removal region*,

end it is permissible for the line from an item's hash address to the item Itself to pass through

the removal region. The removal region is delimited at its counterclockwise end by the

'removal pointer" RP, and at is clockwise end by TiP. After removing 11 and 16, the example

looks like this:

1,

89

advancedl to 4.

(2)V~(RPTLP5 TL()-e 2

(That nvell in temval regiove con sidert to the empty.) s ftht tm.I

(3) V J, k e TL address space, if Tj) k t an TLk) andm Jt o T (kR),TL

(That is, the interval from the hah address of an item to the Item Itel Isnever

noht cins, ymt cells no in the removal region.)ecnidrlt b mt.

(4) V J, k e TL address space, if (aTL(j))) U aTL(K)) and j e [(a(L(K)) , k J
tn a(Th(k)'; > a(TL(j))

90

(That is, if two items have the same hash address, the more ckockwise one has the higher

CCO address, I.*. all the packets having one hash address are ordered by CCO address.)

(5) V J, k e TL address space, If j a [(a(TL(j))) , k) end a(TL(j)) - a(TL(k)),
then V m a [J , k I s(TL(m)) - a(TLUP).
(That is, all Items with one address are adjacent. This Is necessary to be sure that,

when s sequence of adjacent FET(*) packets and a CIR are found, it is possible to

return the LOAD(*) packets followed by a DONF, with no danger that there are unseen

packets elsewhere referring to the same CCD address.)

(6) V J, k c TL address space, if j e ((L(j))) , k) and a(TL(J)) - a(TL(k)),

then Tlj) was placed in the table before TL(k)
(That is. the items with the same CCD address are ordered by age, the youngest beim

most clockwise.) This property makes it possibi, .o return a DONE packet as soon ts

a CLR is encountered in the removal scan, since the p&ickets are encountered in the

same order as they were originally received.

The insertion algorithm requires some care when passing through the removal
region. If the scan starts outside of the region and then enters the region, the item is plIced

in the first cell, and the region is shortened by one so that that cell is no longer part ol the

region. If the scan begins in the region but not in its first cell, the scan skips over the region

and starts after Its &nd. If the scan begins In, the first cell of the region, it skips to the and if

its CCO address is greater than or equal to that of the Item just past the end. Otherwis.e, it is

inserted In the first cell and the region is shortened.

91

30-33 pttR :-2
3434 pu2t62uh - 6ad4

43- 7, 0-0
p' a 0

Th lo ri o Insertn Dnie no theIiivni:ppni IIA ft

action,2 pehppu~figte P ak t a p 3rap aset tin aP 4 akta

The3 remvt aloih ssmwat 3,smer The :a itm4it t yTPi

net4-3 tot b reoe.TeCDponeidiat the current- ite andlal atte4D3upt

Frm hestnpontofte-4g2tm for hat 7, th I the CO43 ne ut ecniee

to e IexThel algoringm uonertnrlo an xte nal tgy he TLi iexernaen III thef

cL lrek contins h shtng oPakf the sift dresso, insthe- caerfofm ah manticatdis

t actimeor, itrhIs thmormion then rDpcead m hap disk's nting r pack etat.E

to ~h feIeoal dacn t uanter c ontr If snchxtrnlaecy To e external v atgeans thi

92

cannot be integrated fully into a system using the packet communication principle. It must be

considered external to the picket system, and some synchronizers or arbitration devices must

be used in the interface. The design of such ah interface is a common problem of digital

system design, and Is beyond the scope of this thesis. We will assume that the interface

between the synchronous memory device and the packet system consists of ports CCDJ and

CCDO. Every time the =CC adv'nces to a new address, an ADOR packet containing that cell's
, address and data are sent to the system through port CCDI. If the system fails to

acknowledge the ADOR packets fast enough, so that the CCD is prevented from sending one, it

t I may either drop the packet or wait until the CCD has shifted all the way around to the same

address again. After the system receivrs an ADDR packet at CD announcing that an address
has been reached, it may transmit a WRITE packet at CCO, giving the address and new data

to write. If this packet is not transmitted soon enough, it might be too late to write the data

into the CO. In this case. the CCO shifts all the way around, not emitting any ADOR packets.

until the address is reached again, and then writes the data,

Wasting an entire rotation time whenever the asynchronous part of the system

can't keep up with the CCD clock may seem drastic, but it doesn't happen very often.

Whenever an asynchronous system must communicate with something such es the CCO clock,

there is the possibility that it may be late. However, it Is not difficult to design the system

such that the probability of this hsppening is vanishingly smail. If this is done, it is possible

to prescribe drastic remedies when it does occur, without significantly degrading system

performance.

The above (;escription of the interface to the CCD may be somewhat simple-

minded. Many memory devices require that the write command, and the data to 'e written, be
given oefore the previous data from the 4,-,,e address is available. This means that the

protocol whereby the system issues a WRITE packet only after receiving an ADDR packet

bearing the data might not be appropriate. In the case of a CCD or other shift register, the,
problem can be solved by having two "taps" on the register: one for reading, and another,

one or two bits later, for writing. In the case of a disk trrmory, the problem is more serious,

and may require thOt the disk announce each address slightly before the data becomes
available. 'the necessary modifications to the asynchronous part of the system wil not be

93

treated here.

The rotating memory module then looks like this:

CMoI RESO

CCDI

inserter remover memory

The removal algorithm waits for an ADDR packet at CCDI matching the address

contained in the packet in the transaction list pointed to by TLP. When found, it performs the

indicated transaction, perhaps sending a packet out at RESO. It then sets RP to the hash

eddress of the item which was just processed, which may shorten the removal region. The

k." item is then erased from tha transaction list, and TLP is advanced to the next position. If TLP

now points to an item having the same CCD address, that item is processed also, using the

same data. All transactions giving !he same address are handled in this way, Any reference

count changes ore noted, and th modified r,,erence count is written back into memory with a

WRITE packet at CCDO.

When TLP reaches a cell which does not contain a transaction for the same

* address, oither I is fo. a clifierent address or it is empty. In the former case, the sy tem

94

welts for the CDto reach the new address. In the letter cas, it sets RP -TIP, destroying
the removal region, an then advance both RP and LP,In step with the AOR packets that
give the CC)addi es untif It fWn a transaction to perf orm,

The algorithm for the rotat memory is given In appendix III EL

95

5.0 STRWTURE CONTROLLER DESIGN CONSIDERATIONS

In this section we will examine a few of the considerations that must go into

ithe design of an efficient structure controller.

5U.1 CECKING THAT THE CONTROLLER OBEYS FW4I

The structure cortroller never issues an UIP command unless the reference

count Is known to be one. Since this Is so, there can be no transactions pending on that cell,

so the requirements of fmI4w are met. This Is contingent, of course, on the rest of the

computer correctly realizing fCONIOLLER ' A reference count violation by the computer

coWtd lead to an UPO packet being sent while there are transactions pending.

5.0.2 PRECISE REFERENCE ACCOUNTING WITH IMPRECISE REFERENCE COUNTS

In checking that fMM satisfies the nceds of the structure controller, there is a

point of possible danger that needs to be checked. Since LOAD(*) packets may be returned

from the memory In an order different from that of the FET(*) packets, it was shown in

section 3.0.2 that the reference counts returned from the memory may be unusual, perhaps

even negative. Is It possible for this to interfere with the cell management mechanism? The

answer is no, as long as the following rule is obeyed:

After increasing a reference count (with a FETe), do not pass the result to any

destination until the corresponding LOAD+ has returned.

For example, if an instruction cell indicates two destinations for its result, the

reference count of the result must be increased with a FET+ before the result is sent to the

destination cells. If one of those cells is a SELECT that issues a FET- to reduce the refe-ence

count, the FET+ must act first. Furthermore, it is not enough to rely on the zero latency

arbitrator to be sure the FET+ gets to the memory before the FrT. The FET" must not be

sent until the LOAD+ arising from the FE' " has returned. This ia accomplished by not sending

the result to the dtstnation cells until the LOAD+ has been received.

96

It Is eay to se that no cell will fail to be relaimed that *houA be reclaimed.

At the time the last *owner* of a cell leaves # FET" to discad it, there are no other

operations pendin on t .Il s t LWD pack tha Is returned will have the correct

reference count, whc Is uem

To see tMa no cell will be accidentally reclaimed that shouldn't be, consider a
cell with reference count 2, owned by Instruction cells X oind Y. Suppose X performs a
structure operation that discard its copy, so that a PET- Is hI sed. We must show that if Y

does not discard Its copy, the LOAW tht arises from n' oeration will not have reference
count amro The o*ly way the reference count coul possibly Vo to zeri Is If Y also cau'4* a
FET7. Sinc Y doe not Intentd to dlacard Its copy of the cell a PUT must have beeA issued

first. (That I te refeenc count should actually po up to 3, then down to 2 and then 1.)

The memory receives the following sequesnce at CM01:

PET-(addr X) I FET*(oddr, Y) PEVr(addr Y)

The situation to be avoidsd Is that In which the scond wad Ih~d LOAD packets are, revesed

LOA(addr,-, 1, X) 1LOAD(addr,- 0, Y) ; WOAD(Wdd,-, 1, Y)

This can't happen, because the FET-(oddr, Y) Is not sent until the LOAD(addr,-,--,V) has been~

returned.

5.0.3 MORY LATENCY

WMs latency was left unspecified only for the purpose of proving correctness

of MM and Its user. When actually implement ng a pti ctica! ps ,' t ', rsory, it masy be

necessary to build a high degree of 1 voney Into so~ro ., d ul: i rder *o obtain good

performance. For example, a *rotating' implementation of MM using a charge coupled shift

register may be designed to have hundrods or thousands of commeand's psndin;(at one time,

97

although its correctness does not depend on this.

58.4 THRUGPUT AND $TRIsMTE OCESSING

One of the fundamental principles of date flow computers is that, if enough

parallelism exists in the progroM a computer be able to run arbitrarily fast for a given logic

speed. To do this, it must distribute the computation and be free of bottlenecks. If a data

flow computer could only have one multiply unit, that would be a bottleneck, since it would

limit the rate st which multiplies could be performed. The data flow concept must not place

any restrictions at all on the number of multipliers that a computer can have (although any

given computer of course has a fixed number). There -must not even be bottlenecks in ports

through which packets must poss. if every multiply operation packet had to pass thvough one

input port of an allocolor on its way to the multipliers, that would be unacceptable, since the

logic speed piecs a limit on the rate at which packets can pass through a port. For example,

if a Wt could handle packets 100 times faster than a multiplier could process them and all

packets had to pass throulh one port, it would mean that no more thin 100 multipliers could

be usefully employed.

In the case sri simple functional units such as multipliers, it is not difficult to

avoid bot tlenecks. -i;#e functional units may be used, and the arbitration and distribution

networks that connect inem to t ie instruction cells may be designed to be free of bottlenecks

and thus mainta1' any desired throughput rate [5]. For the same reason, multiple structure

controllers are used, each with its own ports connected to the arbitration and distribution

networks of the data flow computer, Also, multiple memory units are used, because the total

memory transaction rate is greater than can pass through a single pair of CMDI/RESO ports.

It is not possible to compartmentalize the structure operation facilities as can

be done with simple functional units, Connecting each structuri controler to one memory

module is not correct, because each structure controller must have access to the entire

memcry address space. The structure controllers must be connected !9 the memories through

an Interconnection network cons;,tng of arbitrators and distributors for packets going in each

direction. Command packets from the structure controllers have p4rt of the Odreors field

removedsanduwed toelect the ovW uportof the distributor, lot as was done for the

multipl mummy comaetion in seto U1 In this wey, each structure controller 'sees* the

WdI addres space, while each mery wmodule, sqorts only a mall part .3f the total address
spec.s. The command pocket from the different structure controllers are merged in
erbltraimr,, which append the Incaoig port number to the tag fiold, so that t result packet
wllbe retinedto the votd o roller. Packets comng out of the RESO portsof the
memry modte #us throuh dMsttbutors that usa the ~de bits of the tag fields and
arwMtr that use the incoming port number to reconstruct the full address.

inerconnection network~

01 removs aOW A2 Inserts

uMe pert of Input Port
oddres to select into address

01 D1 A2 A2

Al Al020

Al Inserts 02 riemoves and

Input port uses part of
Into tog tag to select
(except UFD output port.
packets)

MM M

The treatment of address fleids and tog fields Is symmetrical. One could think

mf all pending structure operations as occL'rying a "tog space' Jus as each memory module

supports a small part of the total address space, .*sch structure controller supports a small

part of the total tog space. The job of iti interconnection network is to make the entire

99

address space available to each structure controller, and to make the entire tog space

available to each memory unit.

It Is not nececesry for the network to place the distributors befo": tho

arbitrators. Such a network would have a size proportional to the product of the number of

structure controllers and the number of memory units, which may be excessive. It !s possible

to mix arbitrators and distributors In a network In such a way that the size is reasonable but

bottlenecks are avoided.

Because UPD packets do not have a tag field and do not give rise to result

packets at RESO, it is necessary that the arbitrators and distributors carrying packets from
: struzture controllers to the memory modules (those labelled Al and D| in the preceding

,eAgram) have latency zero. This Is so that, when a structure controller receives an
acknowledge for an UPO packet, it will be guaranteed that the packet has passed through the

arbitrator and is therefore ahead of any packet that may subsequently be Introduced into

another input of the arbitrator. Suppose this were not done: One structure controller might

write on a cell, thereby completing the creation of a structure. When it receives an
acknowledge for that UPD command, it assumes that the structure is complete, and so It

returns it to the rest of the computer. An instruction cell in the computer, having received

this structure, my fire, causing a SELECT operation to be generated. The allocator may send

" the SELECT operation packet to another structure controller, which then sends out a FET

packet with the same address. If there is buffering before the arbitrator that merges packets

from the two structure controllers, the original UPO packet might still be in such a buffer, so

the FET packet passes through the arbitrator first. If this happens, the old data will be read,

rather than the new data supplied by the UPO packet. By making sure that the distributor

and arbitrater have latency zero, the JPO packet cannot get stuck in a buffer. When the first

structure controller receives an acknowledge for the UPD packet, that packet is known to

have been accepted by the arbitrator, and hence it wili precede any subsequent FET packet.

It it is not feasible for the Interconnection network to use distributors and

arbitrators that have no memory, it is rwcessary to put tag fields in all UPO specification

passing through the retwork. An "adapter unit" is placed between the ne'work and each

100)

memory module. The adapter passes all packets through except UPO packets. Wlain it

receives UPO(oddr, data, rot, tag, It sends LPIXMaddr, data, ref) to the memory and UACK(tag)

back to the Interconnection network. The structure controller does not return a structure to

the rest of the computer until It his received UACK replies for all UPO commands that it has

sent. Whether such UACK packets am required Is 4 euestion of the design of efficient routing

networks and Is beyond the sope of this thesis.

S0.5 THE FME STORAGE LISTS

To maintain just one free storage list would create a bottleneck, so each

structure controller has one. Whenever a structure controller reeds a word In order to

create a node, It takes Its address from the packet presented at Input port UIOL (ULD stands

for Aiqu Identifier.) The structure controller does not ask for vddresses at UIUI; they we

supplied In an %unendln(stream, as fat &. they we acknowledged.

The sources of the stream at UlDl ae elso the structure controllers, each o'

whch maintains a free storage list and sends out addresses through output port UIOD. T r

UDO ports wro connected to the UIDI ports thrvph a collection of allocators and arbitrators

cahe the &1 network. The purpose of this network is to maintain a supply of free cells to
Alt controllers, even If se controllers' free storage lists 3hould run out.

101

UAD network

(from UIDO) (to UIDI)

alocators arbitrators

(from UIDO) (to UIDI)

Eah structure controller, in addition to performing structure operations,

maintains a free storage list. Whenever A acknowledge Is received on UI0 It takes a cell

from the list and transmits it.in a lAD packet through lADO. Since a reference count scheme is

used for recovering unused cells, the controller watches for words whose reference counts go

to zero. Every time it reduces a reference count by Issuing a FET" command, it examines the

LOAD packet that Is returned. If It shows a reference count of zero, the word is reclaimed.

This involves placing the word in the free storage list and, since whatever pointers it

contained are destroyed, reducing their reference counts if their elam bits are off. If either

or both of the latter reference counts go to zero, those words are reclaimed by the same

process.

The procedure is recursive, and is an unpleasant type of recursion because the

completion of each operation can produce two more operations to perform. Although the

recursion always terminates, a huge amoxit of storage may be required to hold the list of

words that need to have their reference counts reduced. The problem at its worst can be

observed in the case of a large tree, no subtres of which is shared with anything else, whose

root node is discarded. Ail nodes have an initial reference count of 1,'so, when each node has

its count reduced, it goes to zero, making it necessary to reduce the coun!s of both of that

node's offspring.

To implement this procedure by simply issuing two FET packets whenever a

102

word's reference count goes to wro (that is, whenever a LOAD- Is received bearing a count

of zero), would create an Intractable ddock po oblem because of the proifet ation of packets.

Instead, the procedure that shoul be used Is that only the right offspring of a word should

be treated at the time the wood It pieced on the free storage list. The pointer to the left

offspring will remain in the word while It is on the free storage list. The recursion In this
j procedure Is under control, since only one new operation is created for every operation that

is completed When a word Is taken from the free storage list, the reference count of Its left
offspring Is reduced which may caue one or more words to be reclmed, before the word is

(1) WhnvrawrrfrenecthI eduA 0 asmn h A'Packet

tha Isretrnd. f i sowsa cuntofser$ pt he ordonthe free
stoep t 4 I th oom it n ts igh hlf s torodce hereference

count of the word pointed to by that half. TIs* may caus this skvp to be
repeated.

(2) Whenever an acknowledge Is received from por WOO, get a word from the

free stowage lit and send the packet tRO(addr, Its left half) through MOO.

(The contents of the left half are sent simply to avoid an extra memory

reference.)

(3) Whenever a fresh cell is needed for creation of a structure node, take the

packet UIO(addr, ob)) at port UIDI and acknowledge come. Addr is the

address of at noew cell. If the clam bit of ob] Is off, re#.xe 10 reference

count of the addrassed word. This may cause step (1) to be Invoked.

103
I

50.6 MAINTAIN'IG INTEGRITY OF THE U bOlk4 A NTPNG WCKAM SM

The possibility of an error in the reference accounting and cell management
mecheNsm Is a troublesome problem, because, as explained in section 2.1.1, it Is irpossible

for the memory to detect a reference sccounting error by its user. Furthermore, the effects

of such an error are unpredictable, and may show up in completely unrelated parts of the

computation. However, there are a few things that can be done to minimize the probability of
such an error being undetected

First, all cells on the free storage list can be marked in some way, perhaps by a
bit reserved for this purpose. Any reference to a marked cell other than for the purpose of
removing it from the free storage list is a detectable error. Also, the free storage list can be

organized In such a way that cells we added at one end and removed from the other, thereby

mazing the time that a cell stays on the list once it is put there. If a cell is erroneously

reclaimed while a "spurious" pointer to it exists, It will then probably still be on the free

storage list when the spurious pointer is used, so the error can be detected.

Another way of checking integrity of reference counts is to conduct an audit
of the entire computer. This can be done at the end of the computation, and ;, any point
during the computation. The host computer must disable all instruction cells and wait for all
pending operations to clear out of the structure controllers and the routing networks. All

reference counts can then be checked against the contents of the input registers of the

instruction cells.

104

6.0 THE O.ACLOCK PIIOSLZM

The structure controller and cache module that were described previously were

both required to hve a large capacity for state information which would be unnecessary if

one could always be sure that the device lower In the hierarchy would accept a command.

In the cse of the structure controller, the general behavior upon receiving a

reoult pocket from the memory ;s to perform some transformation on the data In its state

memory and then send a new command packet. Its Internal state memory could be dispensed

with, and the state information placed directly Into the tag fields of the packets. When a

result packet Is received from the memory, a "emorylese" controller's functions would then

be simply to perform a transformation on the packet Itself, forning a new packet which is sent

tt 4, mamw. ,* Thereason this f~ls Is that on can't be sure the memory won't decide to

return a"verd ruluit packets (perhaps all pending ones) before It accepts any more command

packets. Suppose this happened to a mmoryless structure controller. It would have no

plae to put the result packets If the memory unit Isn't accepting any more commands, so a

deadlock would xcur, The problem Is that the controller has violated the rule that It must

always be prepared to accept the results of all pending operations. A structure controller

having state memory avoids this problem by always having space to absorb the results of all

pending operations.

A similar problem arises In the cache module. If a word Is not in the cache and

a FET(*) packet is received, a cell is immediately allocated for it and placed in state P. A

FET(*) packet is also sent to main memory to fetch the data. Until the data returns from the

memory, the cell in the cache does not have date in it, so it serves no useful purpose. It

might seem to maike more sense to aliocite the cache cell only when the first LOAD(*) packet

Is received from the memory rather than when the first FET(*) packet is received from the

user - that is, to bypass state P altogether. The problem is that the creation of a cell in the

cache may require writing out the cell's former contents. If the cell is created in consequence

of the LOAD(*) packet coming from memory, the cashe may have to send a packet to memory

in response to a pcket from memory. If the memory sends such LOAD(*J packets but does

not accept any replies, the cache would have no place to put the data, so a deadlock would

F ---

105

occur. The cache implementation given in section 3.2 avoids this problem by reserving space I
for the LOAD . packet In advance. If an UPO packet must a sent to the memory, it is done

in response to input from the user rather than from the memory. This way, if the memory 2

temporarily refuses to accept the UP, the cache can simply refuse to accept input from its

In both the structure controller and the cache, the cost incurred as a result of

this problem Is an amount of mewo y equal to all the packets that can be simultaneously

pending in all lower levels. In the controller, this is the state information for all concurrently

executing structure operstioats. In the cache, a ctcll might be in state P for every

L FET*/LOD)) cycle that is pending at that instant, Since a cll in state P is useiess, the

cache must be that much larger than It otherwise would be, for a given level of performance.

In the case of #he structure controller, the memory space Is needed somewhere

in any case. If a great number of memory transactions can be pending simultaneously, a
"rotating" memory, such as was described In section 4.0, is presumably being used. If a

memoryless strL ture controller is used, the state information for pending operations is stored
in the tag fields instead of the controller. But the tags of pen.,ng memory operations mist be

stored in the transaction list of the rotating memory, so whatever space was saved in tO

controller Is used up in the transaction list.

. Why, then, would a memoryless structure controller b* more desirable? The

reason is that memory space inside the control!ar is much more expensive than in the

transaction list. The controller must be able to process information as fast as the highest

level of the memory hierarchy. If that highest level is a cache using high speed (and

expensive) devices, the controller must be equally fast. The rotating memory is at the bottom

of the hierarchy, so ifts transaction list can use a slower and less expensive logic family.

In order to use a memoryless structure controller or a cache which does not

use P" cells, the memory system below the controller or (he cache must obey the following

'fixed latency law":

106

Whenever a result packet is transmitted at RESO, the device must accept a

packet at CVLd. If that pocket is an UPO, it must accept yet another, until it

has taken one that s not UPD It must do this even if the user does not accept

anything further at RESO.

'he reason UPO packets are a special case is that they do not generate any result, so the

system should be able to absorb them in unlimited numbers.

Some memory systems obey this law. A random access Implementation of MM

clearly does. A rotating Implementation can also, since the transaction list has fixed size.

Whenever an Item is taken out of the TL, another can be inserted (The Implementation of the

rotating memory given in section 4.0 did not always behave this way, but it could easily be

mo ed to do so.)

The systems that do not obey the fixed latency law ere the horizontal

composition of MM units and the cache. Th! former Includes the interconnection network

between the structure controllers and the memory units. In the case of the horizontal

interconnection of units each of which obeys the fixed latency law, when one unit transmits a

result packet, It will accept a new command. That result packet passes through the arbitrator

e and becomes a result of the Interconnection, so the Interconnection must accept another

command. if the command Is addressed to a different MM unit than the one that transmitted

the result, that unit might not be able to accept It. What is needed Is a way for the units to

share the burden of pending transactions with each other.

In the case of the cache, maintaining a constant number of pending transactions

In the cache and memory combined requires maintaining a constant number of pending

transactions in the memory alone. For every result pocket transmitted by main memory,

another command must go from the cache to main memory. However, such commands only

occur when there are cache misses. If the cache runs into unusual!y good luck and gets a

continuous string of cache hits, it would not send commands to memory. In order to maintain

constant latency, it would have to refuse any result packets from memory. This could result

In some transactions remaining pending indefinitely. While this probably won't cause a data

fow compute to malfuncton, it might be an undW#*bl effect I" general.

The"' difficulties can probably be overcome through the additi"n of extra
circuit to be rie that there Is always apace to han dle all packets. It is niot clear whether

Ohw beneft a a memevyless structure controller Wn a cache without state W* justify ouch

Igo

108

7.0 JMUTIXM FOR FUMEN~ RESEARCN

One of ith printijid problems remaining In the awea of the design of systems

uMing the powke mmmulAtt pINcil Is the devolopment of a practicul aind systematic

proedur for censtrwiting wul IMis to a be peovsn to met given functional specifications.
An Jmportant tool for this took k the deveopmet of # rigorous and concise Architecture
Description Language (AOL) Wth the hsl,, of the AOL, the task can be divided into two pWet:

(1) Development oi a proof methodology so that system expressed In the AOL
can be proven to meet functlonal specifications.

(2) Development of a system construction methodology so that systems

expressed in the AOL can be constructed with confidence that the physical
device will realize the AOL expression.

For this purpose, the AOL. must be simple enough to correspond neatly to the
hardware devices lnvolved, but powerful enough to mak proofs Involving history arrays
tractable.

Another remaining problem Is, of course, to develop functional specifications for

el parts of the data flow computer system, Including the structusre controller, and give Proofs
of their correctness. The functional specification of the computer Itself (that Is, the structure

controller's user) Is needed, amon other things, to show that no reference count violations

will occur.

An efficient structure controller needs to be designed, with special attention to

th neds of program that wre likely to arise.

The deadlock problem ned to be examined carefully, to see if it is worthwhile

to build a memoryless structure controller.

1. AwovWILIntrconecionof DtriaeSystem~ Computation Structures Gru

Note 321, Laboratory for Computer Science, MIT, July 1977.

J 1 2. Ambhle, n~ n. E Knuth. Ordered Hash Tables. The Computer Jurnal 17, (May 1974), pp

i35-i "12.

1 ~3. Anderson, .W., F.. Speraclo, R tt Tomaaulo. The BM System/36O Model 91: Mne

Philosophy and Instruction Hmndlinig. IN~ J. Res anDy 11, 1 (Jan 1967), pp 8-24.

4. Berkeley, E Q, D. CL Bobrow. The Progr~mmIfg Language LISP, Its Operation and

Prepraton.Department olElectrical Engineering and Computer Science, MIT.

6.Dennis, I1 5., D. P. lWsunas. A Preliminary Archtecture for a Basic Data Flow Processor.

DenomputPckt omuiation SrcueGru mo1Larcitetr frei Cofute 1ci7ce SMITor

7.DniI . .P osns .KLug g Parallel Processior IEEE, New Ytre Auga175

9. Kelnir, 1. Pake L ookuhead inAcitcue Procesr. j g ves 7, th ec 975) ppiso

177-19 ofrec5nPaall.rcssn EENwYok ug 95

9. Kelrt okAedPoesr.AM ottn uvy ,4 Dc 95.p

10. Leung, CQ K Architecture Description Language. Comptton Structures Group Memo In

Prewaat'lon, Laboratory for Comouter Science, MT, AM. 1977.

11. Leung, C. K Formal Properties of Wel-Forme4 Datas Flow Schemas. MAC TM66,

Depatment of Electrical Enginering end Compuer Science, MWT, Aone 1975.

12. Madnick, S. E01 I. Donovan. Operating Systems.- McGraw Nil1, 1974.

13. McCarthy, I1 et. A LISP 1.5 Programmer's Mnmual. MIT Press, 1966.

I14. Patil, S. S. Closure Properties of Interconnections of Determinate Systems. 'Rcr of
the ftgjn MAC Conference on Concurrent System .nd eraleI Co~ution ACM, Now

York, 1970, pp 107-1 16.

* 15. Rumbaugh, 4 E A Parallel Asynchronous Computer Architecture for C~ate Flow Progrems.
MAC TIRIBO, Depertmen of Electrical Engineering and Computer Science, MIT, May 1971.

16. Thurber, K 4 L D. Wald. Associative and Parallel Processors. M Sumh rve,~

7, 4.(Ow-. 1975 pp 21-255.

Proof that the concatenation of two FIFO buffiers Is a FIF0 buffer, and WNh are additive.

Thfs proof Is given not because the statement Is of fundlamental Interst, but n an example of
the method of proving theorems AoM the behavior of systems showing a14-Wwl dgmnt In

Lot a FIFOofsiteM hve nput port X wnoutput port L
Let another FIF0 of size N have input port Z and output port Y,

and let the ports Z and the acknwowg ports ZA be linked

From the definition of the first 7170,

(1) IZI -min (CI, IZAI +n 1I
(2) Z1

(3 PCA1 - MM (PCII IZAI + M

From the definition 01 the second 7170,

(4) ftI Wn mmJ IY'A' + 1I

(!5) V1 t;

(6) lz , I , N1. +Y N)

Cm 1: Suppoe XJ IYI* O

By thes stron form, c4 Me. StandAd mowledge Rsstrklisn,
.mw M IZAI or M aIZAI I.1

m S Pq (from 1)

l Pjul (frm Is P3 b 0 ai1)

PC~lmln(CIII.M)(from 3)

IX SIYAI +M +N ~ byhypotesismdifact that M 0)

I Cuse It: Suppose IXl >'IA 'N
If Zl a IZAI, !hen

M -P~l(from 1, since IZI oi IZAI + 1)

M S JJ * N(from 0)

IZAUIYI*N(froM 6hsI'M*eZAlIIZI9)
.9 ZI -IY~lt+N + I

IyII- y.I+ I (from 4)

IZI XI (from 1)

Iyl+1 S X
.. l Y- min I X , IYAI.+1I

P(A -min lX, IYAI.+M N) (from 3mndIZAIuIYAI.N)

In either ce,

113

(from 2mnd5)

IXAI* Wn PII rY+M + N)

whwothcndit or tqhetuN mv.I bkiga FFO oflulgtbMt

114

Algorithm for the .ache.

Actual lookup In the cach. Is not shown. Instead, the special functions

cathe-dat adtkr) .ache-relladI)k uece-asft) and eschai"dr) are ined These
we treated tv though they were wrwy, and we assumned to be deftned whenever the given
address exics In the cathe. Jrn5aft) returns IM If the given address exists In the

cache.

Qs-!maaddr where adr does not exist In the cache, tells whether it can
.1be crested, that Is, whether so ii cell In Its column Is unused or Is In state T.

If can-cyr,.119addr) Is true, c jjjg io-ll-Is rntt addr) tells whether the

former cas holda, and, If o.chershar)performs fti Insertion Into an unused cell.

Otherwise, cO-toj"#a d*) returns the address of a cell In state T, selecting the least

recently used Htem. 2Efgold, new) peforms the replacewAt.

Lm1 sorls CMW, MtA
WrAj I!Lets REMO MEMO

ve cud, Item, addr, data, ref, oid-addr, p
%rm jni false tells whether to wait for InWu from MtA

yj memof lalgf IMj true when last packet sent at MEMW has been acknowledged
*var memowalt mnit fals true when need to send something on MM

var wlt-pkt I the thing tosend

var create-f lag Lrt false true when need to create a new cache cell

var create-pkt Icommanid that led to creation

var new-addr Iaddress field of creste-ph

115

wait for ecliowiedge an Port hMW~
teo the akowledge

£9IQ

At '
~MtII MMoflag Packet Is avaelle On Port hMA
M :- Ift I becomes true if siou l ae packet at hMW

MMOS me O wfg n I s memor y ready for comand

*0Wom-ceJ"--Mstate.Q-orq' tOen M e If need to send a CLR

Memof lag :

flW CLR(addr) V~ Mt hEMO
fcact-state(eddr) tt~ WAig Q tW R, QVto R'

cachle-state(addr): t-WI

cache-stat(addr) :0 T

Jke f mewalt then I se If need to send FET(*J after cresting a cell
memowait :0 ale

Mewoflag :. false;I send wait-pid on Ro MEMO

4 e*ISO If create-flag then I se if trying to create a cell
If can-create(new-adck) then I s some cell in its column empty or in state T?

create-flag :_ false Iyes, will create the cell
if creation-cell-s-SMAXt(new-Wdr) then

cache-create new-addfr) OW odCell empty, just put in now address
else

td-add Pe "I-#" w~d* *W f Nd to dsolae

jjcact-odOd-ad*) lio
memofLe I wrbt OWt previou cOntent If necessay

2W UP(Oid*o cacheMdett*dr), cache-ref (oW-ddr))V ~ IMOO

the now cache cefi now B*uts

Icrete-plt the"---,- 3 whe commn cause the aon"?

lot creat..pt "n "PC- at "M ~ " PIt In "MeO se Wi oitel

cacetaf(nw-add): t at
csch*-ref(new-add) am refl

cache-setmnw-9ddr): "r

ORi omman wm FET*
cchemonew-addr) a

wal-$tamcrete-lii I~que commendn for transmission to memory
MMowalt tru

*: bw~ can't create new cache co, mt wtt

wait for pachet on MENI or CMI)! lot P -that pori

j *..... proce$ packet from CUD! +++++

zf cmd := RCVPKT(CMDI);
If cm.a - E()-,- then

let cmd - FET(*)(addr, tag);
If ln-cacheW&d) then

If cache-stat(addr) - Wr thNm

17_

nwmoflogmgjp state P,jwt aedAtonward

ii..ld IstiR or T
=Wu~ FET(-i-) fn Ineed to W"at refernce cour?

XMTPKT(RESO) t- LOAO(addr, cothe-dt(ddr cach-?efsddr), tao)

Ifaj cmd - FE(-o-)
cache-roe dr)to, cache-ref(addr) - 1;

cache-mod(addr to I

XhCTPT(RES) to LOAD(addr, cuthe-dato(addr) caches-ref(addr), tog)

XMTKRSO) to WRA'addr, csctm-data(*dd cache-ref (eddy) tog)

21M 1 state N

new-eddr -a oddr set I i* so cell will be created

create-pkt ta cmdi

create-flag :-Lu

2hin j ed w UP(-,--y- then
et cmd - LFO(sddr, data, ref X

i in-cchWadr) ft~ I must be state R wr T
cache-date(.ddr) ." doau

cache-meodadr) to re

cache-ref (ddr) :a rf

eg. state N

new-addr to addr; set flags so cell will be ceaoted

create-kt :w cmd

create-flag :a true

ekse ~ must be CLR

let cnd a CLR(sddr)

f In-coche addr) Istate P. R or T

if cache-it ate(addr) - "W then

cache-stote(addr) :- "

cecw~ts(ddr) T

XhtlPKTMO io MW*)

I~ procss pocket from MEMR

IIe -~W(M WL ~ a

cocte-ref(Wdd) mu ref;
XMTPKT(RESO) toit

l*moflsg Ltim can send pumlt at MEMO

iwmotlg ;a jjq yes

tend CLR(addr) r_ wtMDAM

c. che -state(addr) :- Wr
else

vuche-stat*(sddr) :- 'Q Ino

ftI Lf cache-state(addr) "P te
cache-dat(edd) - daea

cech-ref(add) :- ref;
XMTPKT(RESO) :a Item

jmemofogthen Icaend pwlt at MM
meinofiag tohf yevs
MW_ LR(*) MEMD;

cach.-tate(oddr) t- no

21K 1 must be state Q, Q', R, or Fr
jItem sLA(-----) tn I updat ref and send LOAO

cache-ref(addr) acacheref(addr) + 1;

cache-mod(addr) trus

XMTPKT(RESO) :- LOAD(add, data, cachefaddrX tag)

*0 tL Item - .O D(---,- j
Cache-rf(Wdd) :- cache-ref (add) - 1;

cache-mcOdaddr :w re

XhffPK(RESO)- LOAD(ddr, dat, cache-ref (ddr), tag)

let Item - DONE(addr)
If cache-state(adr - " then I know It Is In Cache

cache-stte(addr): "r

else mnt be state V'

cache-state(oddr) :- r

XWTPKT(RESO) :- DONE(addrh

1+ ... ++ end of MEMI processing

Wnt A

121

APPENDIX III A

The Insertion algorithm for the rotating memory.

flg-l become true if TL ulready has UPD packet for this address

P :- (s(X)) I scan pointer -hash address Initially

if !P o TLP and P - RP and hash addr -start of removal reglon?

((aQ) (TL(TLP))) or AX) < a(L(TLP))) then

TU(P) :- X; Insert item at P

PP .- RIP + I W4 shorten the removal row-ion

pop :, pop + I update TL population

If IP . TP and P c [P, TP) then I hash address In removal region

P :a TLP I advance to end of removal region

I repeat until find empty cell or enter removal region

untl(P. andRPoTLP) ot TLP(P),= oy flag-true do
(

I see if TL already has UPO with sam CO address

f (X) a(TL(P))and TL(P) UP(-,--,--)then

flag :M 1
else

if ((A(TL(P))) a (s(X)) and &(X < (TL(P)))

or (Ca(X)) [(a(TL(P))), P] I Is X "smaller' than the current item?

then

Y :- TL(P) save item Irom TL

TL(P) := X; t insert X here

X -W Y isert saved item in next cell

(which pushes everything past here)

122

P-P 1 mdM tadv"c. Ptonxt *

find out whether to Insert X or proces It directly

If n fla then Iinsert it

If P n RP and RIX TLP Ientered removal ron?

then

TL(P) :- X Insert Item at P

RP:- RP + I md M shorten the removal reglion

TL(P) :a X; Insert Item at P

pop :- pop+i I update T. population

else I proces It directly

e TL(P) o UPXucdr, data, ref)

If X -upC(-,--,--) then

TL(P) :a X I another IPO, new one replaces old

else If X - FET(--.--) then
1.6 - ,--... I, ,et the dat

XUTPKT(RESO) :- LOAD(addr, data, ref, tag)

else if X - FET+(--,--) then

let X - FET (--,tag) I FET, get the data and update rf

TL(P) :- UPO(addr, date, ref4lh

XMTPKT(RESO) :- LOAO+(addr, data, ref +1, tag)

else if X - FETr(--,--) then

let X - FET(--,tag) I FET-, get the data and update ref

TL(P) :- UPe(addr, data, ref-I)

XMTPKT(RESO) .- LOAD'(addr, data, ref-1, tag)

else I must be CLR
XMTPKT(RESO) :. DfiE(addr)

123

APPENVJX 111 B

The rotating memory algorithm.

ye P, X, Z, addr, data, ref, tao& CCO-addr, pop Lj~t 0, fl-cmd,

OCD-date, CCO-rof, COD-nawref, TLP, RIP

A: TTLP) Lmt te

RP:- TLP) destroy the removal region

!ftI TUTIP) a jd g TLP 0 (CCC-addcr) do

TLP :.- TLP + I mod advance until catch up to CCD-addr

RIP :- TLP Ikeep remvel region destroyed

[I I look for input packets

R pop M -
then ITL nearly full, can't take packets at ChAD!EZ :-RCVPT(CO! I wait for and accept packet at CCDI

let Z - ADDRCD-addr, CCD-dats, CCD-ref h

CCO-newref :- CCO-ref

else I can accept packet on either port

wait for packet at CIMVI or =CC, set P :- that port Inondeterminate!
If P a CCDI' then

Z :- RCVPKT(CCDI)h I accept packet at CCDI

!P Z - ADDR(CCD-acidr,, OC-da'., CCD-ref)h

eeCCO-newref :-oe

* llli~iP~i~POORi! .L

124

X u CYPKT(CMWth I take pmdwt at CMDI

+ knert or otherwises dispose of X
+. (from appendix III A)-Z

Iperform all transactions matching CCD-addr

!~tTUTP) 0 empty. O~aTLTLP)) a CD-addr do

TLcmd : TLTLP); I remve tramntion from list

TL(TLP) :

pop I- pop-i; Iupdets TL. popijlation

WP:- (a(TL 4md) shorten reoval rooma appropriately

TLP -TLP + I wud14

T 1L-cmd - CLJKOCD-W*d) te

KUTTRESO) io DO Z~(O-aW*

eleIf TL-cmd FET(--r-) then

XMTPKT(RESO) w- LOAO(addr, CCO-date, CCD-newret, tag)

else If TL-cmd -FET*(--,--)thon
lt TL-cmd - FET'(vddr, tag);

CCO-newrof :- CCO-mewref + 1;

XMTPKI(AESO) :- LOAD(ddr CCO-data, CCO-nmwrat, tag)

f!t. f TL-cmd - FET(-,--) then

W1 TL-cmd - FET'(scldr, tag);

OCX-newref :-, CO-newref - 1;

XMTPKT(RESO) aLOAD(addr, CrD-"at, CCO-tewref, tog)

jMAIt bo UPO

I~ L..cmd -p)(~ UPI edddt, rfhpj ~XMTPKT(CCO) - WRITEWdd, data, ref)

rewrt referenc cout llR has chNqed

If CC-of0O-neWref the
XMTKT(XV) *WRTE(CcD-ad, CCo-d&ta, CcO-nwref h

yot A

t5

Official Distribution List

Defense Documentation Center New York Area Office
Cameron Station 715 Broadway - 5th floor
Alexandria, Va 22314 12 copies New York, N. Y. 10003 1 copy

Office of Naval Research Naval Research Laboratory
Information Systems Program Technical Information Division
Code 437 Code 2627
Arlington, Va 22217 2 copies Washington, D. C. 20375 6 copies

Office of Naval Research Dr. A. L. Slafkosky
Code 1021P Scientific Advisor
Arlington, Va 22217 6 copies Commandant of the Marine Corps

(Code RD-l)
Washington, D. C. 20380 1 copy

Office of Naval Research
Code 200
Arlington, Va 22217 1 copy Naval Electronics Laboratory Center

Advanced Software Technology Division
Code 5200

Office of Naval Research San Diego, Ca 92152 1 copy
Code 455
Arlington, Va 22217 1 copy

Mr. E. H. Gleissner
Naval Ship Research & Development Center

Office of Naval Research Computation & Mathematics Department
Code 458 Bethesda, Md 20084 1 copy
Arlington, Va 22217 1 copy

Captain Grace M. Hopper
Office of Naval Research NAICOM/MIS Planning Branch (OP-916D)
Branch Office, Boston Office of Chief of Naval Operations
495 Summer Street Washington, D. C. 20350 1 copy
Boston, Ma 02210 1 copy

Mr. Kin B. Thompson
Office of Naval Research Technical Director
Branch Office, Chicago Infocmation Systems Division (OP-91T)
536 South Clark Street Office of Chief of Naval Operations
Chicago, Il 60605 1 copy Washington, D. C. 20350 1 copy

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, Ca 91106 1 copy

